artbreguez commited on
Commit
60c9873
1 Parent(s): 0e99de2

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 109.77 +/- 70.45
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 2077.10 +/- 45.05
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b2cd0704e0c4f9b3ca10ab8400f0e58610a91f316f75ed053abcca1e69dfcce
3
- size 129260
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d298675efe72e42ee4acdc3abafe4be74af1ec32aa89ed2fe60af4fed0734b
3
+ size 129086
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb950d9e710>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb950d9e7a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb950d9e830>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb950d9e8c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb950d9e950>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb950d9e9e0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb950d9ea70>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb950d9eb00>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb950d9eb90>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb950d9ec20>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb950d9ecb0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb950d9ed40>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fb950d97640>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -64,7 +64,7 @@
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1679959760072894617,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,7 +73,7 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMlkt7+LyMy/vy1DP1o/UL8kNzK/9TbjPZOeEj+G3ERATz25P3mWfLyBfgK/hh2Eu93orr9YlsW9qUS5P7O0tzzYZeI/SgqXu8cGF8BGmkU9kDOlv6kUNrw/xO2/qrkDvb43YD9o3cy/TSKrPuwwBj/1GLG/wNaev3yZVj/kB0a/3Agwv3HewT3RO/k/EZZUQJpcuT/2jTU7UA2HP/kom7sIpK6/QnEDOzyVnT8ERO08D5ziP53TFDzj+BbADErQPNcMpb/CcA47JwhEwKktuLy+N2A/aN3Mv00iqz7sMAY/VNW8v32NtL/6dU8/K0xLv3e1Mb9H3L496hLoP++fVkBEbLk/u4Lquq3wUD/lFUe8NKyuvwaljDuYrZQ/SzvtPAmX4j9dfys8Be8WwJ3/izwnFqW/QtRAOg4fQMBru5a8vjdgP2jdzL9NIqs+7DAGP79UvL8/U8i/2spFP0e2Ub9U0Cy/fIS9PAbBoj+V8FBAFl+5P+9q6zs2TlQ+2FrVOy6wrr+ZuTk8qnudP/FD2jrEYuI/CB5fukn+FsBARNA9Fhmlv+cSXrmdiiHAJCe6vb43YD9o3cy/TSKrPuwwBj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,7 +81,7 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMDK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7c27ugAAAAB6g/C/AAAAAE5X/b0AAAAArXjrPwAAAAAcJRS8AAAAAEW94T8AAAAAuHdhvAAAAAD2yty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY3jlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOodp70AAAAA5mvlvwAAAAAXxRk9AAAAANEuAEAAAAAAclWQPQAAAABBjeQ/AAAAAHUL2r0AAAAARff4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIdMLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDyL4A9AAAAAMq27b8AAAAA2RLwPAAAAAAl8ABAAAAAACFM9jwAAAAAFUDuPwAAAABq7uI8AAAAAL269L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO7Y02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA21kLvgAAAACOs+a/AAAAABG1BT4AAAAABUbdPwAAAADVUpm9AAAAAAeA4z8AAAAAZQKnPAAAAACFAvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
@@ -89,7 +89,7 @@
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE/7XNke6qeMAWyUS0yMAXSUR0Chg8FmWdEtdX2UKGgGR0BkUiPS2H+IaAdN6ANoCEdAoYdwwIt16nV9lChoBkdAWfzBbfP5YmgHTegDaAhHQKGNDJtix3V1fZQoaAZHQFt/yBkI5YJoB03oA2gIR0Chjg/s/pt8dX2UKGgGR0Bm9dfXwsoVaAdN6ANoCEdAoY7DBl+VknV9lChoBkdAYeXSMLncL2gHTegDaAhHQKGXeAHVwxZ1fZQoaAZHQGhdNGd7OVxoB03oA2gIR0ChnIFiay8jdX2UKGgGR0Bm2CTGHYYjaAdN6ANoCEdAoZ2iLEUCaXV9lChoBkdAZMDOIInjQ2gHTegDaAhHQKGeU4bS7Xh1fZQoaAZHQCOsmOU+s5poB0tUaAhHQKGfFQY1pCd1fZQoaAZHQGmRo5YHPeJoB03oA2gIR0ChoWUkv9LpdX2UKGgGR0BmmjUmUnogaAdN6ANoCEdAoaifexfOU3V9lChoBke/+vyxzJZGKGgHSxZoCEdAoajmBxxT9HV9lChoBkfAAvzU7Sy+pWgHSxZoCEdAoakeVTrE+HV9lChoBkdAa9pvYODraGgHTegDaAhHQKGrEuXeFcp1fZQoaAZHQCSLmuDBdldoB0tOaAhHQKGrHeyAxzt1fZQoaAZHQGkkcEeQuEpoB03oA2gIR0ChrcDPOY6XdX2UKGgGR0BncCD28IzFaAdN6ANoCEdAobAPdyksSXV9lChoBkdAZClzkIX0oWgHTegDaAhHQKG1/AvcrRV1fZQoaAZHQGgjfeUILPVoB03oA2gIR0ChtgJokAxSdX2UKGgGR0BA4qXF98Z2aAdLmmgIR0Cht4ShzvJBdX2UKGgGR0BpN3umaYu1aAdN6ANoCEdAobepC6YmcHV9lChoBkdAalWHSF49o2gHTegDaAhHQKG6SunMt9R1fZQoaAZHv9KoJiRW915oB0sUaAhHQKG6dU0elsR1fZQoaAZHP+2pR4yGi6BoB0sUaAhHQKG6oajvd/J1fZQoaAZHQFMM3NcGC7NoB0vnaAhHQKG8vOryUcJ1fZQoaAZHv99PtUn5SFZoB0sVaAhHQKG9grGza9N1fZQoaAZHQGSFZ9Vmz0JoB03oA2gIR0ChwIj0th/idX2UKGgGR7+1httQ9A5aaAdLFGgIR0ChwLg7xNItdX2UKGgGR0BoFXtv4ubraAdN6ANoCEdAocH2XPZ7HHV9lChoBkdAaaJzdUKiPGgHTegDaAhHQKHCGQI2OyV1fZQoaAZHQGv5xradtl9oB03oA2gIR0ChxzmiHqNZdX2UKGgGR0Brc+wosqaxaAdN6ANoCEdAocncBGQSz3V9lChoBkdAaoQIj4YaYWgHTegDaAhHQKHK/iQ1aW51fZQoaAZHQGrIxuKoAGVoB03oA2gIR0ChyyGZmZmadX2UKGgGR0ByOBr433pOaAdN6ANoCEdAoc/DfHggo3V9lChoBkdAYfzTS9du52gHTegDaAhHQKHS2nYQJ5V1fZQoaAZHwADHPu5SWJJoB0sWaAhHQKHTDTGYKIB1fZQoaAZHQFqU8tPHktFoB03oA2gIR0Ch1BfzJ6ppdX2UKGgGR0BjoGeQMhHLaAdN6ANoCEdAodQ9o11nunV9lChoBkdAZkvFuvUz9GgHTQsCaAhHQKHX9HjIaLp1fZQoaAZHQGZTzbN8ma9oB03oA2gIR0Ch2YasySFHdX2UKGgGR0B38Uan752yaAdN6ANoCEdAod4AlhPTHHV9lChoBkdAYOPzkIX0oWgHTegDaAhHQKHeKGqxTsJ1fZQoaAZHQGP3bTc6/7BoB03oA2gIR0Ch4pj5KvmpdX2UKGgGR0BhIyt7rs0IaAdN6ANoCEdAoeSFEPUaynV9lChoBke/zwSzw+dK/WgHSxRoCEdAoeS4QtjCpHV9lChoBkdAZR9K28Zk1GgHTegDaAhHQKHo0/Tspod1fZQoaAZHQGM+uYIBzWBoB03oA2gIR0Ch6PvLHMlkdX2UKGgGR0Bsr+RmseXBaAdN6ANoCEdAoezyD5CWvHV9lChoBkdAabfusLfDUGgHTegDaAhHQKHun2M85jp1fZQoaAZHQHLzBF/hESdoB03oA2gIR0Ch8q56D5CXdX2UKGgGR0B4oXWK/EflaAdN6ANoCEdAofLYzzmOl3V9lChoBkdAZYNNDc/MXGgHTegDaAhHQKH23DF6zE91fZQoaAZHQGepTRQaaThoB03oA2gIR0Ch+HZfUnXvdX2UKGgGR0BzUfQw9JSSaAdN6ANoCEdAofzupMpPRHV9lChoBkdAc0aS9/SYxGgHTegDaAhHQKH9F3bEgnt1fZQoaAZHQGEguEug6EJoB02BAmgIR0Ch/vvHktEodX2UKGgGR0BzVXWZqmCRaAdN6ANoCEdAogDYrUb1iHV9lChoBkdAb9fVFx4pt2gHTegDaAhHQKIGZoQnQY11fZQoaAZHQHIo4DYAbQ1oB03oA2gIR0CiBowLVnVYdX2UKGgGR0BrYxcPe54GaAdN6ANoCEdAoghWQhfShXV9lChoBkdAc4e89wFTvWgHTegDaAhHQKIJ95D7ZWd1fZQoaAZHQGoQTwUg0TFoB03oA2gIR0CiD4B2fTTfdX2UKGgGR0BrBlyWAwwkaAdN6ANoCEdAog+nh2nsLXV9lChoBkdAcmt1n/T9bWgHTegDaAhHQKIRhwcYIjZ1fZQoaAZHQHNZKhg3LmpoB03oA2gIR0CiE1W38XN1dX2UKGgGR0Bo43B3zMA4aAdNmQNoCEdAohgWa6STyXV9lChoBkdAc+8ygPEsKGgHTegDaAhHQKIY885jpcJ1fZQoaAZHQGnLKSHM2WJoB03oA2gIR0CiG1n4O+ZgdX2UKGgGR0BziLzK9wm3aAdN6ANoCEdAoh0KH9FWn3V9lChoBkdAa8Nuw5eZ5WgHTegDaAhHQKIisUCaJAN1fZQoaAZHQGsFh2fTTfBoB03oA2gIR0CiI5QQlKK6dX2UKGgGR0Bq0U3wTdtVaAdN6ANoCEdAoiX2l67dznV9lChoBkdAa4WZrHlwLmgHTegDaAhHQKInjb7CSA91fZQoaAZHQGcr/GlyimFoB01PA2gIR0CiK6vX05EMdX2UKGgGR0BzSJUn5SFXaAdN6ANoCEdAoi58D0UXYXV9lChoBkdAc2H6J66as2gHTegDaAhHQKIwMDrZ8KJ1fZQoaAZHQHOrgo1DSgJoB03oA2gIR0CiMd2hqTKUdX2UKGgGR0BqeHc8DB/JaAdN6ANoCEdAojUDksBhhHV9lChoBkdAcywL876pHmgHTegDaAhHQKI4Z5SFXaJ1fZQoaAZHQHDcCXY150NoB03oA2gIR0CiO/7IcR16dX2UKGgGR0Bg6Y4Ia99MaAdNewFoCEdAoj3CGcnVonV9lChoBkdAcx3nx8UmD2gHTegDaAhHQKI92labF0h1fZQoaAZHQEKuHMUypJhoB0utaAhHQKI/mxrzoU11fZQoaAZHQGj8o+wC8vpoB03oA2gIR0CiQi1zp5eJdX2UKGgGR0BrQQNy5qdpaAdN6ANoCEdAokgJ5zHS4XV9lChoBkdAabUHoouwo2gHTegDaAhHQKJJ0GQjlgd1fZQoaAZHQFjrjVQQ+U1oB0v+aAhHQKJKWFFlTWJ1fZQoaAZHQCucZYPoV21oB0sfaAhHQKJKtbItDlZ1fZQoaAZHQBuaLn9vS+hoB0saaAhHQKJK7ZW7voh1fZQoaAZHQEELWYnfEXNoB0uHaAhHQKJLCBp5/sp1fZQoaAZHQGo62VmjCYVoB03oA2gIR0CiSzyRB/qgdX2UKGgGR0BWDlnZkCmuaAdLbWgIR0CiTBFWOp84dX2UKGgGR0BqqgTGo73gaAdN6ANoCEdAok0Uu+RHPXV9lChoBkdAa8Bd43WFvmgHTegDaAhHQKJXzH/cWTJ1fZQoaAZHQDu55IH1OCZoB0snaAhHQKJYWcriEQJ1fZQoaAZHQGsFmZeAuqZoB03oA2gIR0CiWFoZAIIGdX2UKGgGR0BqCldPci4baAdN6ANoCEdAolkH4EfT1HV9lChoBkdAalFJjDsMRmgHTegDaAhHQKJaWeZG8VZ1ZS4="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b53a47520>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b53a475b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b53a47640>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b53a476d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3b53a47760>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3b53a477f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b53a47880>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b53a47910>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3b53a479a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b53a47a30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b53a47ac0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b53a47b50>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f3b53a42300>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
+ "start_time": 1679963152600244602,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
 
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANzdnj+tPAc+M1kUPwlsAECX8I+/SLmZvyV80zxWfji/TQKFPw3tnb+pSzI/w9lMv11KHj/cvQI/knWLvnEND8CSvS2/A7wnP/IbXT5PSnY/0upmP8kBFj9BwXq/n9Ofvw523L+eK7M+J83uvwedZ78muMY/ICGOvrwGpj5An/8/8/ICwL9j8T40weG+Z2agvzr7qD9Jxie+Fxp7PyWVWL3hWW8/4ziLvkR8bz4Av3m/8jKLv+QlqL42P409U+AqP8nxgz/ECMU/3qXwvimOu79HohQ/niuzPvg3CT8HnWe/yVD0Po1Odb91mu2+ncZjP2olHMAenrg/uZfavo78mL5cz5a/QOygPwgPUz9/d+A+uj+/vbNOVz9DYqU+GTr+PPxSBb4sfH6/yRctv+trIj6Tm22/SBGVPxonpD84dle/R6IUP54rsz74Nwk/B51nv4krjD+0Gu++7UEmPlN6yz/nDBfA+TqAP2YGFL9skE6/O9RcPqqAtz/SAGE//D4DvqGfFj9qHCY/Ah6SPtfCTr8lCIq/QBnGvlNEIL4wyF0/d83FvoUfQj/1MKg+fhojwEeiFD+eK7M++DcJPwedZ7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
 
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA8Qna2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA98+YPAAAAADStvm/AAAAAJE1U70AAAAAWSbdPwAAAABzLd+8AAAAAN4e8j8AAAAACiV8PQAAAACw9PG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvWBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMArAr0AAAAAcbbrvwAAAAA+18s9AAAAALbg2z8AAAAAa7igPQAAAABVoeY/AAAAAFX5ND0AAAAAVILdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMKIjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYQRC+AAAAAAnC6b8AAAAAZ3KhPQAAAAA3AOw/AAAAAHD8YT0AAAAAnZnqPwAAAABq5A6+AAAAAGsM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKJ22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsn2oPQAAAABZ3+q/AAAAAKec/LwAAAAAylzwPwAAAADrQsu9AAAAALsb4T8AAAAAYXdjvAAAAACijf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
 
89
  "_current_progress_remaining": 0.0,
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCBDUz9CNWMAWyUTegDjAF0lEdAoIolgKF7D3V9lChoBkdAkIEubRWtEGgHTegDaAhHQKCKwGqxTsJ1fZQoaAZHQJR+dH4GlhxoB03oA2gIR0CgiyHCoCMhdX2UKGgGR0CONhSS/0ulaAdN6ANoCEdAoIznIwM6R3V9lChoBkdAh/FqGtZFHGgHTegDaAhHQKCSaqXF98Z1fZQoaAZHQIe+Ny925hBoB03oA2gIR0Cgkz4RVZLadX2UKGgGR0CGPc8DB/I9aAdN6ANoCEdAoJOkT6BRRHV9lChoBkdAjFcNjbzshWgHTegDaAhHQKCVYr5IpYt1fZQoaAZHQILOyiqQzUJoB03oA2gIR0CgmxwHqu8sdX2UKGgGR0CKLRLeQ+2WaAdN6ANoCEdAoJvE2pAD73V9lChoBkdAgX8eRYA80WgHTegDaAhHQKCcL4YaYNR1fZQoaAZHQH1kcQumJnBoB03oA2gIR0Cgnfk2xY7rdX2UKGgGR0CN3sEqUeMiaAdN6ANoCEdAoKQCF7D2rXV9lChoBkdAg/I9ic5Ke2gHTegDaAhHQKCkxrGipNt1fZQoaAZHQIr35e3QUpNoB03oA2gIR0CgpUGuDBdldX2UKGgGR0COnotZmqYJaAdN6ANoCEdAoKcpwhnrZHV9lChoBkdAhveiiAUcn2gHTegDaAhHQKCsyFlCkXV1fZQoaAZHQJHMdnmJWNpoB03oA2gIR0CgrV3ai9IxdX2UKGgGR0CGh6j/MnqnaAdN6ANoCEdAoK2+3pfQbHV9lChoBkdAkD4Nepn6EmgHTegDaAhHQKCvwJEYwZh1fZQoaAZHQJISiyiVSoBoB03oA2gIR0CgtOkvkBCEdX2UKGgGR0CW9s1YhdMTaAdN6ANoCEdAoLWZEBsAN3V9lChoBkdAjgooczZYgmgHTegDaAhHQKC19tj0+Tx1fZQoaAZHQJNygP07KaJoB03oA2gIR0Cgt4suez2OdX2UKGgGR0CZ/b0/4ZdfaAdN6ANoCEdAoLzrihnJ1nV9lChoBkdAl688Nc4YJmgHTegDaAhHQKC9fwR5C4V1fZQoaAZHQJsZqEM9bHJoB03oA2gIR0Cgvd01hsqKdX2UKGgGR0CMyjLxqfvnaAdN6ANoCEdAoL92SU1Q7HV9lChoBkdAmMaIjrzGxWgHTegDaAhHQKDE5dVNpM91fZQoaAZHQJvqcuf29L9oB03oA2gIR0CgxYRSpBHDdX2UKGgGR0CWtaKRMewLaAdN6ANoCEdAoMXkrmQr+nV9lChoBkdAmV8YbfgrH2gHTegDaAhHQKDHlJf6XSl1fZQoaAZHQJ0sG/Dcdo5oB03oA2gIR0CgzRT1schldX2UKGgGR0CdR5+r2g3+aAdN6ANoCEdAoM2nlQuVX3V9lChoBkdAoDTz3dsSCmgHTegDaAhHQKDOBqoIfKZ1fZQoaAZHQKB95Lr5ZbJoB03oA2gIR0Cgz9v7m+0xdX2UKGgGR0Cbd0I2OyVwaAdN6ANoCEdAoNUCn752yXV9lChoBkdAneYvRRdhRmgHTegDaAhHQKDVv+2E0zl1fZQoaAZHQKAs49q1w5xoB03oA2gIR0Cg1jcyWRigdX2UKGgGR0Cc+2gTyrggaAdN6ANoCEdAoNfanJkoW3V9lChoBkdAn1HT+irT6WgHTegDaAhHQKDdRRhttQ91fZQoaAZHQJ32q1JDmbNoB03oA2gIR0Cg3eYOUdJbdX2UKGgGR0Cd/DOU+s5oaAdN6ANoCEdAoN5GBczIm3V9lChoBkdAm/RKEal1sGgHTegDaAhHQKDf6gdwNsp1fZQoaAZHQJuOkgTyrghoB03oA2gIR0Cg5WCAc1fmdX2UKGgGR0CcqKttygf2aAdN6ANoCEdAoOXxLVWjoXV9lChoBkdAm+kxIjGDMGgHTegDaAhHQKDmTmSQo1F1fZQoaAZHQJgPRI3BHkNoB03oA2gIR0Cg5/+CbtqpdX2UKGgGR0CaCTRkmQbNaAdN6ANoCEdAoO14XoC+13V9lChoBkdAl/eDXz19OWgHTegDaAhHQKDuEjfvWpZ1fZQoaAZHQJz152fTTfBoB03oA2gIR0Cg7nNsenyedX2UKGgGR0CSDZ3I+4b0aAdN6ANoCEdAoPAfKfWc0HV9lChoBkdAmzRcpkPMCGgHTegDaAhHQKD1qT6BRQ91fZQoaAZHQJnIRxdY4hloB03oA2gIR0Cg9otMXaakdX2UKGgGR0CbrWk6Lfk4aAdN6ANoCEdAoPb76k6903V9lChoBkdAnKFHcHnln2gHTegDaAhHQKD4ps/IKdB1fZQoaAZHQJz/7wazeGhoB03oA2gIR0Cg/iH1e0HAdX2UKGgGR0Cbnu3kPtlaaAdN6ANoCEdAoP6+vjfelHV9lChoBkdAmwtREa2nbmgHTegDaAhHQKD/Jm8ujAV1fZQoaAZHQJ4q+aRZED1oB03oA2gIR0ChAPSYPXkHdX2UKGgGR0Ccsu5ftx+8aAdN6ANoCEdAoQZhGMGX5XV9lChoBkdAm562a+evp2gHTegDaAhHQKEG7xQSBbx1fZQoaAZHQJ1AvDBMzuZoB03oA2gIR0ChB0qEOAiFdX2UKGgGR0Ccvi/jKgZkaAdN6ANoCEdAoQjtrIo3JnV9lChoBkdAnOoDjBEa2mgHTegDaAhHQKEOiiB5HEx1fZQoaAZHQJyp10q6OHZoB03oA2gIR0ChDy1XFLnLdX2UKGgGR0CcfPGDtgKGaAdN6ANoCEdAoQ+O+dsi0XV9lChoBkdAnOyteY2KmGgHTegDaAhHQKERMkgOjIt1fZQoaAZHQJ4PN7SiM5xoB03oA2gIR0ChFuutnwocdX2UKGgGR0CbARdDpkf+aAdN6ANoCEdAoRep6Y3Ns3V9lChoBkdAm9xuMERramgHTegDaAhHQKEYBp9JBgN1fZQoaAZHQJ0jotkFwDNoB03oA2gIR0ChGbXXAdn1dX2UKGgGR0CdKMB6KLsKaAdN6ANoCEdAoR8i3RXwLHV9lChoBkdAnNWedGy5Z2gHTegDaAhHQKEfsJOWSlp1fZQoaAZHQJxHgpx3mmtoB03oA2gIR0ChIA4h2W6cdX2UKGgGR0CeaAoegctHaAdN6ANoCEdAoSG3D+BH1HV9lChoBkdAnog7rHEMs2gHTegDaAhHQKEnL4C6pYN1fZQoaAZHQJyzClXRw61oB03oA2gIR0ChJ9WmgrYodX2UKGgGR0Cbb5wEQoTgaAdN6ANoCEdAoSg2NgjQiXV9lChoBkdAle7GwaBI4GgHTegDaAhHQKEp9a0QbuN1fZQoaAZHQJ0lC1jRUm5oB03oA2gIR0ChLx3xnWaudX2UKGgGR0CcTPuuRs/IaAdN6ANoCEdAoS+zpA2Q4nV9lChoBkdAnXLIM4LkS2gHTegDaAhHQKEwEYP5HmR1fZQoaAZHQJnvEju8brFoB03oA2gIR0ChMelkYoAodX2UKGgGR0CcLXaH9FWoaAdN6ANoCEdAoTcDGNrCWXV9lChoBkdAmwStvCMxXWgHTegDaAhHQKE3umPYFq11fZQoaAZHQJqKjVtoBaNoB03oA2gIR0ChODBnJ1aGdX2UKGgGR0CWvZ9iMHbAaAdN6ANoCEdAoTnW54GD+XV9lChoBkdAm/K6SHM2WWgHTegDaAhHQKE/SWLP2PF1fZQoaAZHQJwdTDBMzuZoB03oA2gIR0ChP+JAdGRWdX2UKGgGR0Cd6S4c3l0YaAdN6ANoCEdAoUBL1Iy0r3V9lChoBkdAm1nIsqaw2WgHTegDaAhHQKFCGhJyyUt1fZQoaAZHQJxBG+dsi0RoB03oA2gIR0ChR5UvwmVrdX2UKGgGR0CdM2mVZ9uxaAdN6ANoCEdAoUglUbT+enV9lChoBkdAmjbGhRIjGGgHTegDaAhHQKFIg1hsqKB1fZQoaAZHQJ4Z1wGW2PVoB03oA2gIR0ChSi+1jRUndX2UKGgGR0Cecs97F85TaAdN6ANoCEdAoU/DvAoG6nV9lChoBkdAni5KgZjx1GgHTegDaAhHQKFQX60IC2d1fZQoaAZHQJ6hvlfZ26loB03oA2gIR0ChUMdiUgSwdX2UKGgGR0Ce5e5gPVd5aAdN6ANoCEdAoVK6/O+qR3VlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:04b08b0764f4164ff6ce42ca2f3919a1af9894116f11808cfd95d6b2cd2d1089
3
  size 56062
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3088927f514946d6bd68839ce3fcebf6803a89eb0228c8d77663a993e3278dd
3
  size 56062
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bbe627e76ffd6d03b7e7d5ec47ef516843e78fbb8fe5e0704fc5541ed5db521c
3
  size 56830
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd65fc3e0b93a2aa6e565c018ef499e8e10edf99ff6175a6078e47c7e618dfa7
3
  size 56830
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb950d9e710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb950d9e7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb950d9e830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb950d9e8c0>", "_build": "<function ActorCriticPolicy._build at 0x7fb950d9e950>", "forward": "<function ActorCriticPolicy.forward at 0x7fb950d9e9e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb950d9ea70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb950d9eb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb950d9eb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb950d9ec20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb950d9ecb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb950d9ed40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb950d97640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679959760072894617, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2FydGh1ci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9hcnRodXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMlkt7+LyMy/vy1DP1o/UL8kNzK/9TbjPZOeEj+G3ERATz25P3mWfLyBfgK/hh2Eu93orr9YlsW9qUS5P7O0tzzYZeI/SgqXu8cGF8BGmkU9kDOlv6kUNrw/xO2/qrkDvb43YD9o3cy/TSKrPuwwBj/1GLG/wNaev3yZVj/kB0a/3Agwv3HewT3RO/k/EZZUQJpcuT/2jTU7UA2HP/kom7sIpK6/QnEDOzyVnT8ERO08D5ziP53TFDzj+BbADErQPNcMpb/CcA47JwhEwKktuLy+N2A/aN3Mv00iqz7sMAY/VNW8v32NtL/6dU8/K0xLv3e1Mb9H3L496hLoP++fVkBEbLk/u4Lquq3wUD/lFUe8NKyuvwaljDuYrZQ/SzvtPAmX4j9dfys8Be8WwJ3/izwnFqW/QtRAOg4fQMBru5a8vjdgP2jdzL9NIqs+7DAGP79UvL8/U8i/2spFP0e2Ub9U0Cy/fIS9PAbBoj+V8FBAFl+5P+9q6zs2TlQ+2FrVOy6wrr+ZuTk8qnudP/FD2jrEYuI/CB5fukn+FsBARNA9Fhmlv+cSXrmdiiHAJCe6vb43YD9o3cy/TSKrPuwwBj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACtMDK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7c27ugAAAAB6g/C/AAAAAE5X/b0AAAAArXjrPwAAAAAcJRS8AAAAAEW94T8AAAAAuHdhvAAAAAD2yty/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY3jlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOodp70AAAAA5mvlvwAAAAAXxRk9AAAAANEuAEAAAAAAclWQPQAAAABBjeQ/AAAAAHUL2r0AAAAARff4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACIdMLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDyL4A9AAAAAMq27b8AAAAA2RLwPAAAAAAl8ABAAAAAACFM9jwAAAAAFUDuPwAAAABq7uI8AAAAAL269L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABO7Y02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA21kLvgAAAACOs+a/AAAAABG1BT4AAAAABUbdPwAAAADVUpm9AAAAAAeA4z8AAAAAZQKnPAAAAACFAvi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE/7XNke6qeMAWyUS0yMAXSUR0Chg8FmWdEtdX2UKGgGR0BkUiPS2H+IaAdN6ANoCEdAoYdwwIt16nV9lChoBkdAWfzBbfP5YmgHTegDaAhHQKGNDJtix3V1fZQoaAZHQFt/yBkI5YJoB03oA2gIR0Chjg/s/pt8dX2UKGgGR0Bm9dfXwsoVaAdN6ANoCEdAoY7DBl+VknV9lChoBkdAYeXSMLncL2gHTegDaAhHQKGXeAHVwxZ1fZQoaAZHQGhdNGd7OVxoB03oA2gIR0ChnIFiay8jdX2UKGgGR0Bm2CTGHYYjaAdN6ANoCEdAoZ2iLEUCaXV9lChoBkdAZMDOIInjQ2gHTegDaAhHQKGeU4bS7Xh1fZQoaAZHQCOsmOU+s5poB0tUaAhHQKGfFQY1pCd1fZQoaAZHQGmRo5YHPeJoB03oA2gIR0ChoWUkv9LpdX2UKGgGR0BmmjUmUnogaAdN6ANoCEdAoaifexfOU3V9lChoBke/+vyxzJZGKGgHSxZoCEdAoajmBxxT9HV9lChoBkfAAvzU7Sy+pWgHSxZoCEdAoakeVTrE+HV9lChoBkdAa9pvYODraGgHTegDaAhHQKGrEuXeFcp1fZQoaAZHQCSLmuDBdldoB0tOaAhHQKGrHeyAxzt1fZQoaAZHQGkkcEeQuEpoB03oA2gIR0ChrcDPOY6XdX2UKGgGR0BncCD28IzFaAdN6ANoCEdAobAPdyksSXV9lChoBkdAZClzkIX0oWgHTegDaAhHQKG1/AvcrRV1fZQoaAZHQGgjfeUILPVoB03oA2gIR0ChtgJokAxSdX2UKGgGR0BA4qXF98Z2aAdLmmgIR0Cht4ShzvJBdX2UKGgGR0BpN3umaYu1aAdN6ANoCEdAobepC6YmcHV9lChoBkdAalWHSF49o2gHTegDaAhHQKG6SunMt9R1fZQoaAZHv9KoJiRW915oB0sUaAhHQKG6dU0elsR1fZQoaAZHP+2pR4yGi6BoB0sUaAhHQKG6oajvd/J1fZQoaAZHQFMM3NcGC7NoB0vnaAhHQKG8vOryUcJ1fZQoaAZHv99PtUn5SFZoB0sVaAhHQKG9grGza9N1fZQoaAZHQGSFZ9Vmz0JoB03oA2gIR0ChwIj0th/idX2UKGgGR7+1httQ9A5aaAdLFGgIR0ChwLg7xNItdX2UKGgGR0BoFXtv4ubraAdN6ANoCEdAocH2XPZ7HHV9lChoBkdAaaJzdUKiPGgHTegDaAhHQKHCGQI2OyV1fZQoaAZHQGv5xradtl9oB03oA2gIR0ChxzmiHqNZdX2UKGgGR0Brc+wosqaxaAdN6ANoCEdAocncBGQSz3V9lChoBkdAaoQIj4YaYWgHTegDaAhHQKHK/iQ1aW51fZQoaAZHQGrIxuKoAGVoB03oA2gIR0ChyyGZmZmadX2UKGgGR0ByOBr433pOaAdN6ANoCEdAoc/DfHggo3V9lChoBkdAYfzTS9du52gHTegDaAhHQKHS2nYQJ5V1fZQoaAZHwADHPu5SWJJoB0sWaAhHQKHTDTGYKIB1fZQoaAZHQFqU8tPHktFoB03oA2gIR0Ch1BfzJ6ppdX2UKGgGR0BjoGeQMhHLaAdN6ANoCEdAodQ9o11nunV9lChoBkdAZkvFuvUz9GgHTQsCaAhHQKHX9HjIaLp1fZQoaAZHQGZTzbN8ma9oB03oA2gIR0Ch2YasySFHdX2UKGgGR0B38Uan752yaAdN6ANoCEdAod4AlhPTHHV9lChoBkdAYOPzkIX0oWgHTegDaAhHQKHeKGqxTsJ1fZQoaAZHQGP3bTc6/7BoB03oA2gIR0Ch4pj5KvmpdX2UKGgGR0BhIyt7rs0IaAdN6ANoCEdAoeSFEPUaynV9lChoBke/zwSzw+dK/WgHSxRoCEdAoeS4QtjCpHV9lChoBkdAZR9K28Zk1GgHTegDaAhHQKHo0/Tspod1fZQoaAZHQGM+uYIBzWBoB03oA2gIR0Ch6PvLHMlkdX2UKGgGR0Bsr+RmseXBaAdN6ANoCEdAoezyD5CWvHV9lChoBkdAabfusLfDUGgHTegDaAhHQKHun2M85jp1fZQoaAZHQHLzBF/hESdoB03oA2gIR0Ch8q56D5CXdX2UKGgGR0B4oXWK/EflaAdN6ANoCEdAofLYzzmOl3V9lChoBkdAZYNNDc/MXGgHTegDaAhHQKH23DF6zE91fZQoaAZHQGepTRQaaThoB03oA2gIR0Ch+HZfUnXvdX2UKGgGR0BzUfQw9JSSaAdN6ANoCEdAofzupMpPRHV9lChoBkdAc0aS9/SYxGgHTegDaAhHQKH9F3bEgnt1fZQoaAZHQGEguEug6EJoB02BAmgIR0Ch/vvHktEodX2UKGgGR0BzVXWZqmCRaAdN6ANoCEdAogDYrUb1iHV9lChoBkdAb9fVFx4pt2gHTegDaAhHQKIGZoQnQY11fZQoaAZHQHIo4DYAbQ1oB03oA2gIR0CiBowLVnVYdX2UKGgGR0BrYxcPe54GaAdN6ANoCEdAoghWQhfShXV9lChoBkdAc4e89wFTvWgHTegDaAhHQKIJ95D7ZWd1fZQoaAZHQGoQTwUg0TFoB03oA2gIR0CiD4B2fTTfdX2UKGgGR0BrBlyWAwwkaAdN6ANoCEdAog+nh2nsLXV9lChoBkdAcmt1n/T9bWgHTegDaAhHQKIRhwcYIjZ1fZQoaAZHQHNZKhg3LmpoB03oA2gIR0CiE1W38XN1dX2UKGgGR0Bo43B3zMA4aAdNmQNoCEdAohgWa6STyXV9lChoBkdAc+8ygPEsKGgHTegDaAhHQKIY885jpcJ1fZQoaAZHQGnLKSHM2WJoB03oA2gIR0CiG1n4O+ZgdX2UKGgGR0BziLzK9wm3aAdN6ANoCEdAoh0KH9FWn3V9lChoBkdAa8Nuw5eZ5WgHTegDaAhHQKIisUCaJAN1fZQoaAZHQGsFh2fTTfBoB03oA2gIR0CiI5QQlKK6dX2UKGgGR0Bq0U3wTdtVaAdN6ANoCEdAoiX2l67dznV9lChoBkdAa4WZrHlwLmgHTegDaAhHQKInjb7CSA91fZQoaAZHQGcr/GlyimFoB01PA2gIR0CiK6vX05EMdX2UKGgGR0BzSJUn5SFXaAdN6ANoCEdAoi58D0UXYXV9lChoBkdAc2H6J66as2gHTegDaAhHQKIwMDrZ8KJ1fZQoaAZHQHOrgo1DSgJoB03oA2gIR0CiMd2hqTKUdX2UKGgGR0BqeHc8DB/JaAdN6ANoCEdAojUDksBhhHV9lChoBkdAcywL876pHmgHTegDaAhHQKI4Z5SFXaJ1fZQoaAZHQHDcCXY150NoB03oA2gIR0CiO/7IcR16dX2UKGgGR0Bg6Y4Ia99MaAdNewFoCEdAoj3CGcnVonV9lChoBkdAcx3nx8UmD2gHTegDaAhHQKI92labF0h1fZQoaAZHQEKuHMUypJhoB0utaAhHQKI/mxrzoU11fZQoaAZHQGj8o+wC8vpoB03oA2gIR0CiQi1zp5eJdX2UKGgGR0BrQQNy5qdpaAdN6ANoCEdAokgJ5zHS4XV9lChoBkdAabUHoouwo2gHTegDaAhHQKJJ0GQjlgd1fZQoaAZHQFjrjVQQ+U1oB0v+aAhHQKJKWFFlTWJ1fZQoaAZHQCucZYPoV21oB0sfaAhHQKJKtbItDlZ1fZQoaAZHQBuaLn9vS+hoB0saaAhHQKJK7ZW7voh1fZQoaAZHQEELWYnfEXNoB0uHaAhHQKJLCBp5/sp1fZQoaAZHQGo62VmjCYVoB03oA2gIR0CiSzyRB/qgdX2UKGgGR0BWDlnZkCmuaAdLbWgIR0CiTBFWOp84dX2UKGgGR0BqqgTGo73gaAdN6ANoCEdAok0Uu+RHPXV9lChoBkdAa8Bd43WFvmgHTegDaAhHQKJXzH/cWTJ1fZQoaAZHQDu55IH1OCZoB0snaAhHQKJYWcriEQJ1fZQoaAZHQGsFmZeAuqZoB03oA2gIR0CiWFoZAIIGdX2UKGgGR0BqCldPci4baAdN6ANoCEdAolkH4EfT1HV9lChoBkdAalFJjDsMRmgHTegDaAhHQKJaWeZG8VZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b53a47520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b53a475b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b53a47640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b53a476d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b53a47760>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b53a477f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b53a47880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b53a47910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b53a479a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b53a47a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b53a47ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b53a47b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b53a42300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679963152600244602, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2FydGh1ci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9hcnRodXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANzdnj+tPAc+M1kUPwlsAECX8I+/SLmZvyV80zxWfji/TQKFPw3tnb+pSzI/w9lMv11KHj/cvQI/knWLvnEND8CSvS2/A7wnP/IbXT5PSnY/0upmP8kBFj9BwXq/n9Ofvw523L+eK7M+J83uvwedZ78muMY/ICGOvrwGpj5An/8/8/ICwL9j8T40weG+Z2agvzr7qD9Jxie+Fxp7PyWVWL3hWW8/4ziLvkR8bz4Av3m/8jKLv+QlqL42P409U+AqP8nxgz/ECMU/3qXwvimOu79HohQ/niuzPvg3CT8HnWe/yVD0Po1Odb91mu2+ncZjP2olHMAenrg/uZfavo78mL5cz5a/QOygPwgPUz9/d+A+uj+/vbNOVz9DYqU+GTr+PPxSBb4sfH6/yRctv+trIj6Tm22/SBGVPxonpD84dle/R6IUP54rsz74Nwk/B51nv4krjD+0Gu++7UEmPlN6yz/nDBfA+TqAP2YGFL9skE6/O9RcPqqAtz/SAGE//D4DvqGfFj9qHCY/Ah6SPtfCTr8lCIq/QBnGvlNEIL4wyF0/d83FvoUfQj/1MKg+fhojwEeiFD+eK7M++DcJPwedZ7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA8Qna2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA98+YPAAAAADStvm/AAAAAJE1U70AAAAAWSbdPwAAAABzLd+8AAAAAN4e8j8AAAAACiV8PQAAAACw9PG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvWBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMArAr0AAAAAcbbrvwAAAAA+18s9AAAAALbg2z8AAAAAa7igPQAAAABVoeY/AAAAAFX5ND0AAAAAVILdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMKIjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYQRC+AAAAAAnC6b8AAAAAZ3KhPQAAAAA3AOw/AAAAAHD8YT0AAAAAnZnqPwAAAABq5A6+AAAAAGsM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKJ22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsn2oPQAAAABZ3+q/AAAAAKec/LwAAAAAylzwPwAAAADrQsu9AAAAALsb4T8AAAAAYXdjvAAAAACijf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCBDUz9CNWMAWyUTegDjAF0lEdAoIolgKF7D3V9lChoBkdAkIEubRWtEGgHTegDaAhHQKCKwGqxTsJ1fZQoaAZHQJR+dH4GlhxoB03oA2gIR0CgiyHCoCMhdX2UKGgGR0CONhSS/0ulaAdN6ANoCEdAoIznIwM6R3V9lChoBkdAh/FqGtZFHGgHTegDaAhHQKCSaqXF98Z1fZQoaAZHQIe+Ny925hBoB03oA2gIR0Cgkz4RVZLadX2UKGgGR0CGPc8DB/I9aAdN6ANoCEdAoJOkT6BRRHV9lChoBkdAjFcNjbzshWgHTegDaAhHQKCVYr5IpYt1fZQoaAZHQILOyiqQzUJoB03oA2gIR0CgmxwHqu8sdX2UKGgGR0CKLRLeQ+2WaAdN6ANoCEdAoJvE2pAD73V9lChoBkdAgX8eRYA80WgHTegDaAhHQKCcL4YaYNR1fZQoaAZHQH1kcQumJnBoB03oA2gIR0Cgnfk2xY7rdX2UKGgGR0CN3sEqUeMiaAdN6ANoCEdAoKQCF7D2rXV9lChoBkdAg/I9ic5Ke2gHTegDaAhHQKCkxrGipNt1fZQoaAZHQIr35e3QUpNoB03oA2gIR0CgpUGuDBdldX2UKGgGR0COnotZmqYJaAdN6ANoCEdAoKcpwhnrZHV9lChoBkdAhveiiAUcn2gHTegDaAhHQKCsyFlCkXV1fZQoaAZHQJHMdnmJWNpoB03oA2gIR0CgrV3ai9IxdX2UKGgGR0CGh6j/MnqnaAdN6ANoCEdAoK2+3pfQbHV9lChoBkdAkD4Nepn6EmgHTegDaAhHQKCvwJEYwZh1fZQoaAZHQJISiyiVSoBoB03oA2gIR0CgtOkvkBCEdX2UKGgGR0CW9s1YhdMTaAdN6ANoCEdAoLWZEBsAN3V9lChoBkdAjgooczZYgmgHTegDaAhHQKC19tj0+Tx1fZQoaAZHQJNygP07KaJoB03oA2gIR0Cgt4suez2OdX2UKGgGR0CZ/b0/4ZdfaAdN6ANoCEdAoLzrihnJ1nV9lChoBkdAl688Nc4YJmgHTegDaAhHQKC9fwR5C4V1fZQoaAZHQJsZqEM9bHJoB03oA2gIR0Cgvd01hsqKdX2UKGgGR0CMyjLxqfvnaAdN6ANoCEdAoL92SU1Q7HV9lChoBkdAmMaIjrzGxWgHTegDaAhHQKDE5dVNpM91fZQoaAZHQJvqcuf29L9oB03oA2gIR0CgxYRSpBHDdX2UKGgGR0CWtaKRMewLaAdN6ANoCEdAoMXkrmQr+nV9lChoBkdAmV8YbfgrH2gHTegDaAhHQKDHlJf6XSl1fZQoaAZHQJ0sG/Dcdo5oB03oA2gIR0CgzRT1schldX2UKGgGR0CdR5+r2g3+aAdN6ANoCEdAoM2nlQuVX3V9lChoBkdAoDTz3dsSCmgHTegDaAhHQKDOBqoIfKZ1fZQoaAZHQKB95Lr5ZbJoB03oA2gIR0Cgz9v7m+0xdX2UKGgGR0Cbd0I2OyVwaAdN6ANoCEdAoNUCn752yXV9lChoBkdAneYvRRdhRmgHTegDaAhHQKDVv+2E0zl1fZQoaAZHQKAs49q1w5xoB03oA2gIR0Cg1jcyWRigdX2UKGgGR0Cc+2gTyrggaAdN6ANoCEdAoNfanJkoW3V9lChoBkdAn1HT+irT6WgHTegDaAhHQKDdRRhttQ91fZQoaAZHQJ32q1JDmbNoB03oA2gIR0Cg3eYOUdJbdX2UKGgGR0Cd/DOU+s5oaAdN6ANoCEdAoN5GBczIm3V9lChoBkdAm/RKEal1sGgHTegDaAhHQKDf6gdwNsp1fZQoaAZHQJuOkgTyrghoB03oA2gIR0Cg5WCAc1fmdX2UKGgGR0CcqKttygf2aAdN6ANoCEdAoOXxLVWjoXV9lChoBkdAm+kxIjGDMGgHTegDaAhHQKDmTmSQo1F1fZQoaAZHQJgPRI3BHkNoB03oA2gIR0Cg5/+CbtqpdX2UKGgGR0CaCTRkmQbNaAdN6ANoCEdAoO14XoC+13V9lChoBkdAl/eDXz19OWgHTegDaAhHQKDuEjfvWpZ1fZQoaAZHQJz152fTTfBoB03oA2gIR0Cg7nNsenyedX2UKGgGR0CSDZ3I+4b0aAdN6ANoCEdAoPAfKfWc0HV9lChoBkdAmzRcpkPMCGgHTegDaAhHQKD1qT6BRQ91fZQoaAZHQJnIRxdY4hloB03oA2gIR0Cg9otMXaakdX2UKGgGR0CbrWk6Lfk4aAdN6ANoCEdAoPb76k6903V9lChoBkdAnKFHcHnln2gHTegDaAhHQKD4ps/IKdB1fZQoaAZHQJz/7wazeGhoB03oA2gIR0Cg/iH1e0HAdX2UKGgGR0Cbnu3kPtlaaAdN6ANoCEdAoP6+vjfelHV9lChoBkdAmwtREa2nbmgHTegDaAhHQKD/Jm8ujAV1fZQoaAZHQJ4q+aRZED1oB03oA2gIR0ChAPSYPXkHdX2UKGgGR0Ccsu5ftx+8aAdN6ANoCEdAoQZhGMGX5XV9lChoBkdAm562a+evp2gHTegDaAhHQKEG7xQSBbx1fZQoaAZHQJ1AvDBMzuZoB03oA2gIR0ChB0qEOAiFdX2UKGgGR0Ccvi/jKgZkaAdN6ANoCEdAoQjtrIo3JnV9lChoBkdAnOoDjBEa2mgHTegDaAhHQKEOiiB5HEx1fZQoaAZHQJyp10q6OHZoB03oA2gIR0ChDy1XFLnLdX2UKGgGR0CcfPGDtgKGaAdN6ANoCEdAoQ+O+dsi0XV9lChoBkdAnOyteY2KmGgHTegDaAhHQKERMkgOjIt1fZQoaAZHQJ4PN7SiM5xoB03oA2gIR0ChFuutnwocdX2UKGgGR0CbARdDpkf+aAdN6ANoCEdAoRep6Y3Ns3V9lChoBkdAm9xuMERramgHTegDaAhHQKEYBp9JBgN1fZQoaAZHQJ0jotkFwDNoB03oA2gIR0ChGbXXAdn1dX2UKGgGR0CdKMB6KLsKaAdN6ANoCEdAoR8i3RXwLHV9lChoBkdAnNWedGy5Z2gHTegDaAhHQKEfsJOWSlp1fZQoaAZHQJxHgpx3mmtoB03oA2gIR0ChIA4h2W6cdX2UKGgGR0CeaAoegctHaAdN6ANoCEdAoSG3D+BH1HV9lChoBkdAnog7rHEMs2gHTegDaAhHQKEnL4C6pYN1fZQoaAZHQJyzClXRw61oB03oA2gIR0ChJ9WmgrYodX2UKGgGR0Cbb5wEQoTgaAdN6ANoCEdAoSg2NgjQiXV9lChoBkdAle7GwaBI4GgHTegDaAhHQKEp9a0QbuN1fZQoaAZHQJ0lC1jRUm5oB03oA2gIR0ChLx3xnWaudX2UKGgGR0CcTPuuRs/IaAdN6ANoCEdAoS+zpA2Q4nV9lChoBkdAnXLIM4LkS2gHTegDaAhHQKEwEYP5HmR1fZQoaAZHQJnvEju8brFoB03oA2gIR0ChMelkYoAodX2UKGgGR0CcLXaH9FWoaAdN6ANoCEdAoTcDGNrCWXV9lChoBkdAmwStvCMxXWgHTegDaAhHQKE3umPYFq11fZQoaAZHQJqKjVtoBaNoB03oA2gIR0ChODBnJ1aGdX2UKGgGR0CWvZ9iMHbAaAdN6ANoCEdAoTnW54GD+XV9lChoBkdAm/K6SHM2WWgHTegDaAhHQKE/SWLP2PF1fZQoaAZHQJwdTDBMzuZoB03oA2gIR0ChP+JAdGRWdX2UKGgGR0Cd6S4c3l0YaAdN6ANoCEdAoUBL1Iy0r3V9lChoBkdAm1nIsqaw2WgHTegDaAhHQKFCGhJyyUt1fZQoaAZHQJxBG+dsi0RoB03oA2gIR0ChR5UvwmVrdX2UKGgGR0CdM2mVZ9uxaAdN6ANoCEdAoUglUbT+enV9lChoBkdAmjbGhRIjGGgHTegDaAhHQKFIg1hsqKB1fZQoaAZHQJ4Z1wGW2PVoB03oA2gIR0ChSi+1jRUndX2UKGgGR0Cecs97F85TaAdN6ANoCEdAoU/DvAoG6nV9lChoBkdAni5KgZjx1GgHTegDaAhHQKFQX60IC2d1fZQoaAZHQJ6hvlfZ26loB03oA2gIR0ChUMdiUgSwdX2UKGgGR0Ce5e5gPVd5aAdN6ANoCEdAoVK6/O+qR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92dc43808e00bcbec2512cb83352b9f5743b0dcfed270caaeab9dc9446afc112
3
+ size 1278191
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1713.606565874687, "std_reward": 89.0691661254785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T21:16:16.342275"}
 
1
+ {"mean_reward": 2077.103919350705, "std_reward": 45.05137106541111, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-27T22:03:45.487940"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40d226276809afa79553e3f9054fc70a83c0c051833740f69242169db34495c7
3
  size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cd1db63726fc208c99c25b770e5e5c4649e4251fdf2455dc2dc1040fe1e588a
3
  size 2136