File size: 2,460 Bytes
f41decf
aa8aa27
 
 
f41decf
74a0694
aa8aa27
7f7e5f7
aa8aa27
 
 
 
 
7f7e5f7
aa8aa27
7f7e5f7
aa8aa27
7f7e5f7
aa8aa27
9308dda
 
 
 
aa8aa27
f41decf
e1dd7de
 
 
8b9d038
 
41ffa9a
df86d4a
8b9d038
bbd04f0
 
 
8b9d038
d7398c4
5238431
e1dd7de
 
8b9d038
c656caa
8b9d038
 
 
6991149
 
 
 
 
8b9d038
 
 
 
 
 
 
 
f41decf
8b9d038
 
 
 
 
 
 
 
f41decf
 
 
 
 
 
 
 
 
 
 
8b9d038
f41decf
 
 
74a0694
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- en
license: apache-2.0
library_name: peft
tags:
- text-generation
widget:
- text: 'Below is an instruction that describes a task, paired with an input that
    provides further context. Write a response that appropriately completes the request.

    ### Instruction: Generate an SQL statement to add a row in the customers table
    where the columns are name, address, and city.

    ### Input: name = John, address = 123 Main Street, city = Winter Park

    ### Response:

    '
inference:
  parameters:
    temperature: 0.1
    max_new_tokens: 1024
base_model: meta-llama/Llama-2-7b-hf
---
# QLoRA weights using Llama-2-7b for the Code Alpaca Dataset

# Fine-Tuning on Predibase

This model was fine-tuned using [Predibase](https://predibase.com/), the first low-code AI platform for engineers.
I fine-tuned base Llama-2-7b using LoRA with 4 bit quantization on a single T4 GPU, which cost approximately $3 to train
on Predibase. Try out our free Predibase trial [here](https://predibase.com/free-trial).

Dataset and training parameters are borrowed from: https://github.com/sahil280114/codealpaca,
but all of these parameters including DeepSpeed can be directly used with [Ludwig](https://ludwig.ai/latest/), the open-source
toolkit for LLMs that Predibase is built on.

Co-trained by: [Infernaught](https://huggingface.co/Infernaught)

# How To Use The Model

To use these weights:
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

# Load base model in 4 bit
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", load_in_4bit=True)

# Wrap model with pretrained model weights
config = PeftConfig.from_pretrained("arnavgrg/codealpaca-qlora")
model = PeftModel.from_pretrained(model, "arnavgrg/codealpaca-qlora")
```

Prompt Template:
```
Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

### Instruction: {instruction}

### Input: {input}

### Response:
```

## Training procedure

The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16

### Framework versions


- PEFT 0.4.0