File size: 2,349 Bytes
f41decf
 
74a0694
7f7e5f7
aec94cb
c656caa
7f7e5f7
 
 
 
 
 
 
 
 
 
 
 
9308dda
 
 
 
f41decf
e1dd7de
 
 
8b9d038
 
41ffa9a
df86d4a
8b9d038
bbd04f0
 
 
8b9d038
d7398c4
5238431
e1dd7de
 
8b9d038
c656caa
8b9d038
 
 
 
 
 
 
 
 
 
 
 
 
f41decf
8b9d038
 
 
 
 
 
 
 
f41decf
 
 
 
 
 
 
 
 
 
 
8b9d038
f41decf
 
 
74a0694
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: peft
tags:
  - text-generation
license: apache-2.0
language:
  - en
widget:
  - text: >
      Below is an instruction that describes a task, paired with an input that
      provides further context. Write a response that appropriately completes
      the request.

      ### Instruction: Generate an SQL statement to add a row in the customers table where the columns are name, address, and city.

      ### Input: name = John, address = 123 Main Street, city = Winter Park

      ### Response:
inference:
  parameters:
    temperature: 0.1
    max_new_tokens: 1024
---
# QLoRA weights using Llama-2-7b for the Code Alpaca Dataset

# Fine-Tuning on Predibase

This model was fine-tuned using [Predibase](https://predibase.com/), the first low-code AI platform for engineers.
I fine-tuned base Llama-2-7b using LoRA with 4 bit quantization on a single T4 GPU, which cost approximately $3 to train
on Predibase. Try out our free Predibase trial [here](https://predibase.com/free-trial).

Dataset and training parameters are borrowed from: https://github.com/sahil280114/codealpaca,
but all of these parameters including DeepSpeed can be directly used with [Ludwig](https://ludwig.ai/latest/), the open-source
toolkit for LLMs that Predibase is built on.

Co-trained by: [Infernaught](https://huggingface.co/Infernaught)

# How To Use The Model

To use these weights:
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("arnavgrg/codealpaca-qlora")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
model = PeftModel.from_pretrained(model, "arnavgrg/codealpaca-qlora")
```

Prompt Template:
```
Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

### Instruction: {instruction}

### Input: {input}

### Response:
```

## Training procedure

The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16

### Framework versions


- PEFT 0.4.0