arjan-hada commited on
Commit
5eea787
1 Parent(s): a7e8d8c

Model save

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: facebook/esm2_t12_35M_UR50D
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - spearmanr
8
+ model-index:
9
+ - name: esm2_t12_35M_UR50D-finetuned-rep7868aav2-v1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # esm2_t12_35M_UR50D-finetuned-rep7868aav2-v1
17
+
18
+ This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0505
21
+ - Spearmanr: 0.7430
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 20
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Spearmanr |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|
53
+ | 0.1227 | 1.0 | 590 | 0.1132 | 0.3426 |
54
+ | 0.117 | 2.0 | 1180 | 0.1105 | 0.3945 |
55
+ | 0.1177 | 3.0 | 1770 | 0.1150 | 0.2857 |
56
+ | 0.1143 | 4.0 | 2360 | 0.1107 | 0.3518 |
57
+ | 0.1176 | 5.0 | 2950 | 0.1133 | 0.3774 |
58
+ | 0.117 | 6.0 | 3540 | 0.1115 | 0.3230 |
59
+ | 0.1178 | 7.0 | 4130 | 0.1107 | 0.4432 |
60
+ | 0.1146 | 8.0 | 4720 | 0.1105 | 0.4608 |
61
+ | 0.1182 | 9.0 | 5310 | 0.1105 | 0.4004 |
62
+ | 0.114 | 10.0 | 5900 | 0.1122 | 0.5124 |
63
+ | 0.115 | 11.0 | 6490 | 0.1108 | 0.5551 |
64
+ | 0.1152 | 12.0 | 7080 | 0.1091 | 0.5391 |
65
+ | 0.1109 | 13.0 | 7670 | 0.0705 | 0.6234 |
66
+ | 0.0888 | 14.0 | 8260 | 0.0633 | 0.6810 |
67
+ | 0.0832 | 15.0 | 8850 | 0.0584 | 0.6952 |
68
+ | 0.0705 | 16.0 | 9440 | 0.0585 | 0.7102 |
69
+ | 0.0635 | 17.0 | 10030 | 0.0581 | 0.7167 |
70
+ | 0.0606 | 18.0 | 10620 | 0.0525 | 0.7326 |
71
+ | 0.0562 | 19.0 | 11210 | 0.0555 | 0.7403 |
72
+ | 0.055 | 20.0 | 11800 | 0.0505 | 0.7430 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.35.2
78
+ - Pytorch 2.1.0+cu121
79
+ - Datasets 2.17.1
80
+ - Tokenizers 0.15.2