Initial commit
Browse files- .gitattributes +1 -0
- README.md +87 -0
- args.yml +81 -0
- config.yml +33 -0
- env_kwargs.yml +1 -0
- ppo-MountainCarContinuous-v0.zip +3 -0
- ppo-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- ppo-MountainCarContinuous-v0/data +111 -0
- ppo-MountainCarContinuous-v0/policy.optimizer.pth +3 -0
- ppo-MountainCarContinuous-v0/policy.pth +3 -0
- ppo-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- ppo-MountainCarContinuous-v0/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: MountainCarContinuous-v0
|
16 |
+
type: MountainCarContinuous-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.16 +/- 0.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **MountainCarContinuous-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env MountainCarContinuous-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga araffin
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('clip_range', 0.1),
|
67 |
+
('ent_coef', 0.00429),
|
68 |
+
('gae_lambda', 0.9),
|
69 |
+
('gamma', 0.9999),
|
70 |
+
('learning_rate', 7.77e-05),
|
71 |
+
('max_grad_norm', 5),
|
72 |
+
('n_envs', 1),
|
73 |
+
('n_epochs', 10),
|
74 |
+
('n_steps', 8),
|
75 |
+
('n_timesteps', 20000.0),
|
76 |
+
('normalize', True),
|
77 |
+
('policy', 'MlpPolicy'),
|
78 |
+
('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'),
|
79 |
+
('use_sde', True),
|
80 |
+
('vf_coef', 0.19),
|
81 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
82 |
+
```
|
83 |
+
|
84 |
+
# Environment Arguments
|
85 |
+
```python
|
86 |
+
{'render_mode': 'rgb_array'}
|
87 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- MountainCarContinuous-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2289121902
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - clip_range
|
5 |
+
- 0.1
|
6 |
+
- - ent_coef
|
7 |
+
- 0.00429
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.9
|
10 |
+
- - gamma
|
11 |
+
- 0.9999
|
12 |
+
- - learning_rate
|
13 |
+
- 7.77e-05
|
14 |
+
- - max_grad_norm
|
15 |
+
- 5
|
16 |
+
- - n_envs
|
17 |
+
- 1
|
18 |
+
- - n_epochs
|
19 |
+
- 10
|
20 |
+
- - n_steps
|
21 |
+
- 8
|
22 |
+
- - n_timesteps
|
23 |
+
- 20000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict(log_std_init=-3.29, ortho_init=False)
|
30 |
+
- - use_sde
|
31 |
+
- true
|
32 |
+
- - vf_coef
|
33 |
+
- 0.19
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
ppo-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c03e1fb65054051f7bd882f881d0bc1c9de057797a17c1dda122f3603344bad
|
3 |
+
size 133332
|
ppo-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.2.0a3
|
ppo-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ecd38a170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ecd38a200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ecd38a290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ecd38a320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2ecd38a3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2ecd38a440>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ecd38a4d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ecd38a560>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2ecd38a5f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ecd38a680>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ecd38a710>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ecd38a7a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2ecd37fec0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
"log_std_init": -3.29,
|
25 |
+
"ortho_init": false
|
26 |
+
},
|
27 |
+
"num_timesteps": 7800,
|
28 |
+
"_total_timesteps": 20000,
|
29 |
+
"_num_timesteps_at_start": 0,
|
30 |
+
"seed": 0,
|
31 |
+
"action_noise": null,
|
32 |
+
"start_time": 1694941444829405239,
|
33 |
+
"learning_rate": {
|
34 |
+
":type:": "<class 'function'>",
|
35 |
+
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/FF5b1emsAYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
36 |
+
},
|
37 |
+
"tensorboard_log": null,
|
38 |
+
"_last_obs": null,
|
39 |
+
"_last_episode_starts": {
|
40 |
+
":type:": "<class 'numpy.ndarray'>",
|
41 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
42 |
+
},
|
43 |
+
"_last_original_obs": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAMqNA78AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_episode_num": 0,
|
48 |
+
"use_sde": true,
|
49 |
+
"sde_sample_freq": -1,
|
50 |
+
"_current_progress_remaining": 0.61,
|
51 |
+
"_stats_window_size": 100,
|
52 |
+
"ep_info_buffer": {
|
53 |
+
":type:": "<class 'collections.deque'>",
|
54 |
+
":serialized:": "gAWVmQEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv/eS4vvjOs2MAWyUTecDjAF0lEdADzPfsNUfgnV9lChoBke/+QhcJMQEp2gHTecDaAhHQB6A9V3ljmV1fZQoaAZHwAlvZRKpT/BoB03nA2gIR0AmtSSeRPoFdX2UKGgGR0BXOM8ox59maAdNswFoCEdAKgoJqqOtGXV9lChoBkdAVgBF4LThHmgHTb8BaAhHQC1tDpkf9xZ1fZQoaAZHQFgcaisXBP9oB0vWaAhHQC8Ro4+8oQZ1fZQoaAZHQFeBhAWznihoB0vjaAhHQDBhcMVk+X91fZQoaAZHQFbOwYtQKrtoB00qAWgIR0AxfumJm/WUdX2UKGgGR0BXqp7CzkZKaAdL7WgIR0AyW11nuiN9dX2UKGgGR0BYKjR2KVIJaAdNaAFoCEdAM6w7T2FnI3V9lChoBkfAGqqUNayKN2gHTecDaAhHQDddomG/N7l1fZQoaAZHwApUqYqoZQ5oB03nA2gIR0A7H4z7/GVBdWUu"
|
55 |
+
},
|
56 |
+
"ep_success_buffer": {
|
57 |
+
":type:": "<class 'collections.deque'>",
|
58 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
59 |
+
},
|
60 |
+
"_n_updates": 9749,
|
61 |
+
"observation_space": {
|
62 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
63 |
+
":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
64 |
+
"dtype": "float32",
|
65 |
+
"bounded_below": "[ True True]",
|
66 |
+
"bounded_above": "[ True True]",
|
67 |
+
"_shape": [
|
68 |
+
2
|
69 |
+
],
|
70 |
+
"low": "[-1.2 -0.07]",
|
71 |
+
"high": "[0.6 0.07]",
|
72 |
+
"low_repr": "[-1.2 -0.07]",
|
73 |
+
"high_repr": "[0.6 0.07]",
|
74 |
+
"_np_random": null
|
75 |
+
},
|
76 |
+
"action_space": {
|
77 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
78 |
+
":serialized:": "gAWVTAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
|
79 |
+
"dtype": "float32",
|
80 |
+
"bounded_below": "[ True]",
|
81 |
+
"bounded_above": "[ True]",
|
82 |
+
"_shape": [
|
83 |
+
1
|
84 |
+
],
|
85 |
+
"low": "[-1.]",
|
86 |
+
"high": "[1.]",
|
87 |
+
"low_repr": "-1.0",
|
88 |
+
"high_repr": "1.0",
|
89 |
+
"_np_random": "Generator(PCG64)"
|
90 |
+
},
|
91 |
+
"n_envs": 1,
|
92 |
+
"n_steps": 8,
|
93 |
+
"gamma": 0.9999,
|
94 |
+
"gae_lambda": 0.9,
|
95 |
+
"ent_coef": 0.00429,
|
96 |
+
"vf_coef": 0.19,
|
97 |
+
"max_grad_norm": 5,
|
98 |
+
"batch_size": 256,
|
99 |
+
"n_epochs": 10,
|
100 |
+
"clip_range": {
|
101 |
+
":type:": "<class 'function'>",
|
102 |
+
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
103 |
+
},
|
104 |
+
"clip_range_vf": null,
|
105 |
+
"normalize_advantage": true,
|
106 |
+
"target_kl": null,
|
107 |
+
"lr_schedule": {
|
108 |
+
":type:": "<class 'function'>",
|
109 |
+
":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/FF5b1emsAYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
110 |
+
}
|
111 |
+
}
|
ppo-MountainCarContinuous-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce3dee4dfa7ef85f5ba2a65d9ddce877688b8520e736922a9e53b66b51fbf620
|
3 |
+
size 81136
|
ppo-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:879545aca0fc5fe2036d03b2b851fb3102ea22faaf61baacb477d092d9b2769f
|
3 |
+
size 39870
|
ppo-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-83-generic-x86_64-with-glibc2.35 # 92-Ubuntu SMP Mon Aug 14 09:30:42 UTC 2023
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 2.2.0a3
|
4 |
+
- PyTorch: 2.1.0.dev20230420+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3357cb589ca25845b09a624dbd85dd6ef453c848652f3351b1d1d19fede17ec
|
3 |
+
size 76952
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.1606132, "std_reward": 0.052100623107214375, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T11:05:04.684534"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cca1f625f30b973c6ca13a647e5d0774bde2f5b49dc934b371ee931a7872f9b
|
3 |
+
size 497
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d8f7c8921d6af77103691fdebae65de9bd407f5324b9c699a7929e0ad7ed0dd
|
3 |
+
size 1651
|