araffin commited on
Commit
f5de75d
1 Parent(s): d4fbd42

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCarContinuous-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCarContinuous-v0
16
+ type: MountainCarContinuous-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.16 +/- 0.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **MountainCarContinuous-v0**
25
+ This is a trained model of a **PPO** agent playing **MountainCarContinuous-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env MountainCarContinuous-v0 -orga araffin -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env MountainCarContinuous-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env MountainCarContinuous-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env MountainCarContinuous-v0 -f logs/ -orga araffin
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('clip_range', 0.1),
67
+ ('ent_coef', 0.00429),
68
+ ('gae_lambda', 0.9),
69
+ ('gamma', 0.9999),
70
+ ('learning_rate', 7.77e-05),
71
+ ('max_grad_norm', 5),
72
+ ('n_envs', 1),
73
+ ('n_epochs', 10),
74
+ ('n_steps', 8),
75
+ ('n_timesteps', 20000.0),
76
+ ('normalize', True),
77
+ ('policy', 'MlpPolicy'),
78
+ ('policy_kwargs', 'dict(log_std_init=-3.29, ortho_init=False)'),
79
+ ('use_sde', True),
80
+ ('vf_coef', 0.19),
81
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
82
+ ```
83
+
84
+ # Environment Arguments
85
+ ```python
86
+ {'render_mode': 'rgb_array'}
87
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - MountainCarContinuous-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2289121902
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - clip_range
5
+ - 0.1
6
+ - - ent_coef
7
+ - 0.00429
8
+ - - gae_lambda
9
+ - 0.9
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 7.77e-05
14
+ - - max_grad_norm
15
+ - 5
16
+ - - n_envs
17
+ - 1
18
+ - - n_epochs
19
+ - 10
20
+ - - n_steps
21
+ - 8
22
+ - - n_timesteps
23
+ - 20000.0
24
+ - - normalize
25
+ - true
26
+ - - policy
27
+ - MlpPolicy
28
+ - - policy_kwargs
29
+ - dict(log_std_init=-3.29, ortho_init=False)
30
+ - - use_sde
31
+ - true
32
+ - - vf_coef
33
+ - 0.19
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ render_mode: rgb_array
ppo-MountainCarContinuous-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c03e1fb65054051f7bd882f881d0bc1c9de057797a17c1dda122f3603344bad
3
+ size 133332
ppo-MountainCarContinuous-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.0a3
ppo-MountainCarContinuous-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ecd38a170>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ecd38a200>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ecd38a290>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ecd38a320>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2ecd38a3b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2ecd38a440>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ecd38a4d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ecd38a560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2ecd38a5f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ecd38a680>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ecd38a710>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ecd38a7a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2ecd37fec0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ "log_std_init": -3.29,
25
+ "ortho_init": false
26
+ },
27
+ "num_timesteps": 7800,
28
+ "_total_timesteps": 20000,
29
+ "_num_timesteps_at_start": 0,
30
+ "seed": 0,
31
+ "action_noise": null,
32
+ "start_time": 1694941444829405239,
33
+ "learning_rate": {
34
+ ":type:": "<class 'function'>",
35
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/FF5b1emsAYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
36
+ },
37
+ "tensorboard_log": null,
38
+ "_last_obs": null,
39
+ "_last_episode_starts": {
40
+ ":type:": "<class 'numpy.ndarray'>",
41
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
42
+ },
43
+ "_last_original_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAMqNA78AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
46
+ },
47
+ "_episode_num": 0,
48
+ "use_sde": true,
49
+ "sde_sample_freq": -1,
50
+ "_current_progress_remaining": 0.61,
51
+ "_stats_window_size": 100,
52
+ "ep_info_buffer": {
53
+ ":type:": "<class 'collections.deque'>",
54
+ ":serialized:": "gAWVmQEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv/eS4vvjOs2MAWyUTecDjAF0lEdADzPfsNUfgnV9lChoBke/+QhcJMQEp2gHTecDaAhHQB6A9V3ljmV1fZQoaAZHwAlvZRKpT/BoB03nA2gIR0AmtSSeRPoFdX2UKGgGR0BXOM8ox59maAdNswFoCEdAKgoJqqOtGXV9lChoBkdAVgBF4LThHmgHTb8BaAhHQC1tDpkf9xZ1fZQoaAZHQFgcaisXBP9oB0vWaAhHQC8Ro4+8oQZ1fZQoaAZHQFeBhAWznihoB0vjaAhHQDBhcMVk+X91fZQoaAZHQFbOwYtQKrtoB00qAWgIR0AxfumJm/WUdX2UKGgGR0BXqp7CzkZKaAdL7WgIR0AyW11nuiN9dX2UKGgGR0BYKjR2KVIJaAdNaAFoCEdAM6w7T2FnI3V9lChoBkfAGqqUNayKN2gHTecDaAhHQDddomG/N7l1fZQoaAZHwApUqYqoZQ5oB03nA2gIR0A7H4z7/GVBdWUu"
55
+ },
56
+ "ep_success_buffer": {
57
+ ":type:": "<class 'collections.deque'>",
58
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
59
+ },
60
+ "_n_updates": 9749,
61
+ "observation_space": {
62
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
63
+ ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
64
+ "dtype": "float32",
65
+ "bounded_below": "[ True True]",
66
+ "bounded_above": "[ True True]",
67
+ "_shape": [
68
+ 2
69
+ ],
70
+ "low": "[-1.2 -0.07]",
71
+ "high": "[0.6 0.07]",
72
+ "low_repr": "[-1.2 -0.07]",
73
+ "high_repr": "[0.6 0.07]",
74
+ "_np_random": null
75
+ },
76
+ "action_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVTAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoQ42GVprdeWAktRZZZNLWhGowDaW5jlIoQqXN4RLwzgViCGvc629qNQXWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[ True]",
81
+ "bounded_above": "[ True]",
82
+ "_shape": [
83
+ 1
84
+ ],
85
+ "low": "[-1.]",
86
+ "high": "[1.]",
87
+ "low_repr": "-1.0",
88
+ "high_repr": "1.0",
89
+ "_np_random": "Generator(PCG64)"
90
+ },
91
+ "n_envs": 1,
92
+ "n_steps": 8,
93
+ "gamma": 0.9999,
94
+ "gae_lambda": 0.9,
95
+ "ent_coef": 0.00429,
96
+ "vf_coef": 0.19,
97
+ "max_grad_norm": 5,
98
+ "batch_size": 256,
99
+ "n_epochs": 10,
100
+ "clip_range": {
101
+ ":type:": "<class 'function'>",
102
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
103
+ },
104
+ "clip_range_vf": null,
105
+ "normalize_advantage": true,
106
+ "target_kl": null,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWV1QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL2FudG9uaW4vRG9jdW1lbnRzL2Rsci9ybC90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/FF5b1emsAYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
110
+ }
111
+ }
ppo-MountainCarContinuous-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce3dee4dfa7ef85f5ba2a65d9ddce877688b8520e736922a9e53b66b51fbf620
3
+ size 81136
ppo-MountainCarContinuous-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:879545aca0fc5fe2036d03b2b851fb3102ea22faaf61baacb477d092d9b2769f
3
+ size 39870
ppo-MountainCarContinuous-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-MountainCarContinuous-v0/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.0-83-generic-x86_64-with-glibc2.35 # 92-Ubuntu SMP Mon Aug 14 09:30:42 UTC 2023
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 2.2.0a3
4
+ - PyTorch: 2.1.0.dev20230420+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3357cb589ca25845b09a624dbd85dd6ef453c848652f3351b1d1d19fede17ec
3
+ size 76952
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.1606132, "std_reward": 0.052100623107214375, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T11:05:04.684534"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cca1f625f30b973c6ca13a647e5d0774bde2f5b49dc934b371ee931a7872f9b
3
+ size 497
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d8f7c8921d6af77103691fdebae65de9bd407f5324b9c699a7929e0ad7ed0dd
3
+ size 1651