mahyar-najibi
commited on
Commit
•
25f115c
1
Parent(s):
1a81796
Update README
Browse files- README.md +3 -3
- generate_openelm.py +5 -0
README.md
CHANGED
@@ -20,17 +20,17 @@ We have provided an example function to generate output from OpenELM models load
|
|
20 |
|
21 |
You can try the model by running the following command:
|
22 |
```
|
23 |
-
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
|
24 |
```
|
25 |
Please refer to [this link](https://huggingface.co/docs/hub/security-tokens) to obtain your hugging face access token.
|
26 |
|
27 |
Additional arguments to the hugging face generate function can be passed via `generate_kwargs`. As an example, to speedup the inference, you can try [lookup token speculative generation](https://huggingface.co/docs/transformers/generation_strategies) by passing the `prompt_lookup_num_tokens` argument as follows:
|
28 |
```
|
29 |
-
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
|
30 |
```
|
31 |
Alternatively, model-wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted-generation) can be also tried by passing a smaller model model through the `assistant_model` argument, for example:
|
32 |
```
|
33 |
-
python generate_openelm.py --model apple/OpenELM-3B --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model apple/OpenELM-270M
|
34 |
```
|
35 |
|
36 |
|
|
|
20 |
|
21 |
You can try the model by running the following command:
|
22 |
```
|
23 |
+
python generate_openelm.py --model apple/OpenELM-3B-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2
|
24 |
```
|
25 |
Please refer to [this link](https://huggingface.co/docs/hub/security-tokens) to obtain your hugging face access token.
|
26 |
|
27 |
Additional arguments to the hugging face generate function can be passed via `generate_kwargs`. As an example, to speedup the inference, you can try [lookup token speculative generation](https://huggingface.co/docs/transformers/generation_strategies) by passing the `prompt_lookup_num_tokens` argument as follows:
|
28 |
```
|
29 |
+
python generate_openelm.py --model apple/OpenELM-3B-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 prompt_lookup_num_tokens=10
|
30 |
```
|
31 |
Alternatively, model-wise speculative generation with an [assistive model](https://huggingface.co/blog/assisted-generation) can be also tried by passing a smaller model model through the `assistant_model` argument, for example:
|
32 |
```
|
33 |
+
python generate_openelm.py --model apple/OpenELM-3B-Instruct --hf_access_token [HF_ACCESS_TOKEN] --prompt 'Once upon a time there was' --generate_kwargs repetition_penalty=1.2 --assistant_model apple/OpenELM-270M-Instruct
|
34 |
```
|
35 |
|
36 |
|
generate_openelm.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Module to generate OpenELM output given a model and an input prompt."""
|
2 |
import os
|
3 |
import logging
|
|
|
1 |
+
#
|
2 |
+
# For licensing see accompanying LICENSE file.
|
3 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
4 |
+
#
|
5 |
+
|
6 |
"""Module to generate OpenELM output given a model and an input prompt."""
|
7 |
import os
|
8 |
import logging
|