File size: 2,046 Bytes
e8bf239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-news_headlines
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-news_headlines
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9947
- Rouge1: 53.8834
- Rouge2: 35.147
- Rougel: 50.8217
- Rougelsum: 50.9105
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 2.0129 | 1.0 | 1531 | 1.5160 | 44.1037 | 21.8536 | 40.2425 | 40.3433 |
| 1.6207 | 2.0 | 3062 | 1.2865 | 46.6327 | 25.2538 | 43.0594 | 43.1583 |
| 1.4243 | 3.0 | 4593 | 1.2410 | 48.3304 | 27.729 | 45.0085 | 45.0977 |
| 1.2828 | 4.0 | 6124 | 1.1008 | 50.7514 | 30.7978 | 47.5413 | 47.6432 |
| 1.1796 | 5.0 | 7655 | 1.0646 | 52.4672 | 33.0679 | 49.2593 | 49.3381 |
| 1.1059 | 6.0 | 9186 | 1.0082 | 53.4044 | 34.4035 | 50.3925 | 50.4943 |
| 1.0596 | 7.0 | 10717 | 0.9947 | 53.8834 | 35.147 | 50.8217 | 50.9105 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|