{ "run_name": "wavegrad-ljspeech", "run_description": "wavegrad ljspeech", "audio":{ "fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame. "win_length": 1024, // stft window length in ms. "hop_length": 256, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. // Audio processing parameters "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "ref_level_db": 0, // reference level db, theoretically 20db is the sound of air. // Silence trimming "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) "trim_db": 60, // threshold for timming silence. Set this according to your dataset. // MelSpectrogram parameters "num_mels": 80, // size of the mel spec frame. "mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!! "spec_gain": 1.0, // scaler value appplied after log transform of spectrogram. // Normalization parameters "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. "min_level_db": -100, // lower bound for normalization "symmetric_norm": true, // move normalization to range [-1, 1] "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored }, // DISTRIBUTED TRAINING "mixed_precision": false, "distributed":{ "backend": "nccl", "url": "tcp:\/\/localhost:54322" }, "target_loss": "avg_wavegrad_loss", // loss value to pick the best model to save after each epoch // MODEL PARAMETERS "generator_model": "wavegrad", "model_params":{ "y_conv_channels":32, "x_conv_channels":768, "ublock_out_channels": [512, 512, 256, 128, 128], "dblock_out_channels": [128, 128, 256, 512], "upsample_factors": [4, 4, 4, 2, 2], "upsample_dilations": [ [1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]], "use_weight_norm": true }, // DATASET "data_path": "tests/data/ljspeech/wavs/", // root data path. It finds all wav files recursively from there. "feature_path": null, // if you use precomputed features "seq_len": 6144, // 24 * hop_length "pad_short": 0, // additional padding for short wavs "conv_pad": 0, // additional padding against convolutions applied to spectrograms "use_noise_augment": false, // add noise to the audio signal for augmentation "use_cache": true, // use in memory cache to keep the computed features. This might cause OOM. "reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers. // TRAINING "batch_size": 1, // Batch size for training. "train_noise_schedule":{ "min_val": 1e-6, "max_val": 1e-2, "num_steps": 1000 }, "test_noise_schedule":{ "min_val": 1e-6, "max_val": 1e-2, "num_steps": 2 }, // VALIDATION "run_eval": true, // enable/disable evaluation run // OPTIMIZER "epochs": 1, // total number of epochs to train. "clip_grad": 1.0, // Generator gradient clipping threshold. Apply gradient clipping if > 0 "lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate "lr_scheduler_params": { "gamma": 0.5, "milestones": [100000, 200000, 300000, 400000, 500000, 600000] }, "lr": 1e-4, // Initial learning rate. If Noam decay is active, maximum learning rate. // TENSORBOARD and LOGGING "print_step": 250, // Number of steps to log traning on console. "print_eval": false, // If True, it prints loss values for each step in eval run. "save_step": 10000, // Number of training steps expected to plot training stats on TB and save model checkpoints. "checkpoint": true, // If true, it saves checkpoints per "save_step" "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. // DATA LOADING "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "eval_split_size": 4, // PATHS "output_path": "tests/train_outputs/" }