--- license: apache-2.0 language: - en tags: - chat pipeline_tag: text-generation library_name: transformers --- ## This repo contains EXL2 quants of the model. If you need the original weights, please find them [here](https://huggingface.co/anthracite-org/magnum-v4-12b). ## Base repo only contains the measurement file, see revisions for your quant of choice. - [measurement.json](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/main) - [3.0bpw](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/3.0bpw) - [4.0bpw](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/4.0bpw) - [5.0bpw](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/5.0bpw) - [6.0bpw](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/6.0bpw) - [8.0bpw](https://huggingface.co/anthracite-org/magnum-v4-12b-exl2/tree/8.0bpw) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/-UC6YN1Gt3e1FDh8EqyaB.png) This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407). ## Prompting A typical input would look like this: ```py [INST] SYSTEM MESSAGE USER MESSAGE[/INST] ASSISTANT MESSAGE[INST] USER MESSAGE[/INST] ``` ## SillyTavern templates Below are Instruct and Context templates for use within SillyTavern.
context template ```yaml default SillyTavern template works fine ```

instruct template ```yaml default SillyTavern template works fine ```

## Axolotl config
See axolotl config ```yaml base_model: mistralai/Mistral-Nemo-Instruct-2407 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer hub_model_id: anthracite-org/magnum-v4-12b-r2 hub_strategy: "all_checkpoints" push_dataset_to_hub: hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system type: custommistralv3tekken - path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system type: custommistralv3tekken - path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system type: custommistralv3tekken - path: anthracite-org/nopm_claude_writing_fixed type: custommistralv3tekken - path: anthracite-org/kalo_opus_misc_240827_no_system type: custommistralv3tekken - path: anthracite-org/kalo_misc_part2_no_system type: custommistralv3tekken #chat_template: chatml shuffle_merged_datasets: true #default_system_message: "You are an assistant that responds to the user." dataset_prepared_path: /workspace/data/magnum-12b-data val_set_size: 0.0 output_dir: /workspace/data/12b-fft-out sequence_len: 32768 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: 12b-magnum-fft wandb_entity: wandb_watch: wandb_name: v4-r2-attempt-01 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 40 evals_per_epoch: eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.1 fsdp: fsdp_config: special_tokens: pad_token: ```

## Credits We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. We would also like to thank all members of Anthracite who made this finetune possible. ## Datasets - [anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system](https://huggingface.co/datasets/anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system) - [anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system) - [anthracite-org/kalo-opus-instruct-3k-filtered-no-system](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-3k-filtered-no-system) - [anthracite-org/nopm_claude_writing_fixed](https://huggingface.co/datasets/anthracite-org/nopm_claude_writing_fixed) - [anthracite-org/kalo_opus_misc_240827_no_system](https://huggingface.co/datasets/anthracite-org/kalo_opus_misc_240827_no_system) - [anthracite-org/kalo_misc_part2_no_system](https://huggingface.co/datasets/anthracite-org/kalo_misc_part2_no_system) ## Training The training was done for 2 epochs. We used 8x[H100s](https://www.nvidia.com/en-us/data-center/h100/) GPUs graciously provided by [Recursal AI](https://recursal.ai/) / [Featherless AI](https://featherless.ai/) for the full-parameter fine-tuning of the model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...