--- license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NEW_trained_english results: [] --- # NEW_trained_english This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1146 - Precision: 0.7363 - Recall: 0.7212 - F1: 0.7287 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1114 | 1.0 | 784 | 0.0881 | 0.7161 | 0.7397 | 0.7277 | 0.9756 | | 0.0308 | 2.0 | 1568 | 0.1023 | 0.7348 | 0.6738 | 0.7030 | 0.9749 | | 0.0155 | 3.0 | 2352 | 0.1055 | 0.7588 | 0.7109 | 0.7340 | 0.9775 | | 0.0062 | 4.0 | 3136 | 0.1146 | 0.7363 | 0.7212 | 0.7287 | 0.9767 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2