File size: 2,017 Bytes
2918013
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NEW_trained_english
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# NEW_trained_english

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1146
- Precision: 0.7363
- Recall: 0.7212
- F1: 0.7287
- Accuracy: 0.9767

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05

- train_batch_size: 8

- eval_batch_size: 8

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4



### Training results



| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |

|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|

| 0.1114        | 1.0   | 784  | 0.0881          | 0.7161    | 0.7397 | 0.7277 | 0.9756   |

| 0.0308        | 2.0   | 1568 | 0.1023          | 0.7348    | 0.6738 | 0.7030 | 0.9749   |

| 0.0155        | 3.0   | 2352 | 0.1055          | 0.7588    | 0.7109 | 0.7340 | 0.9775   |

| 0.0062        | 4.0   | 3136 | 0.1146          | 0.7363    | 0.7212 | 0.7287 | 0.9767   |





### Framework versions



- Transformers 4.38.2

- Pytorch 2.1.2+cu118

- Datasets 2.18.0

- Tokenizers 0.15.2