File size: 1,755 Bytes
8738f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: cc-by-sa-4.0
base_model: nlpaueb/legal-bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: partisan-legal-bert-base-uncased-supreme-court-32batch_5epoch_2e5lr_1wd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# partisan-legal-bert-base-uncased-supreme-court-32batch_5epoch_2e5lr_1wd

This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7014
- Accuracy: 0.6763

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6555        | 1.0   | 660  | 0.5453          | 0.6563   |
| 0.603         | 2.0   | 1320 | 0.5560          | 0.67     |
| 0.5715        | 3.0   | 1980 | 0.5691          | 0.6641   |
| 0.4327        | 4.0   | 2640 | 0.6462          | 0.6648   |
| 0.3684        | 5.0   | 3300 | 0.7014          | 0.6763   |


### Framework versions

- Transformers 4.35.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1