Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
language: tr
|
2 |
datasets:
|
3 |
- common_voice
|
@@ -51,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -87,30 +88,30 @@ processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-
|
|
87 |
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
|
88 |
model.to("cuda")
|
89 |
|
90 |
-
chars_to_ignore_regex = '[
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
|
93 |
# Preprocessing the datasets.
|
94 |
# We need to read the aduio files as arrays
|
95 |
def speech_file_to_array_fn(batch):
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
|
101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
102 |
|
103 |
# Preprocessing the datasets.
|
104 |
# We need to read the aduio files as arrays
|
105 |
def evaluate(batch):
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
116 |
|
@@ -123,16 +124,16 @@ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"],
|
|
123 |
unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish.
|
124 |
|
125 |
Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments:
|
126 |
-
--num_train_epochs="30"
|
127 |
-
--per_device_train_batch_size="32"
|
128 |
-
--evaluation_strategy="steps"
|
129 |
-
--activation_dropout="0.055"
|
130 |
-
--attention_dropout="0.094"
|
131 |
-
--feat_proj_dropout="0.04"
|
132 |
-
--hidden_dropout="0.047"
|
133 |
-
--layerdrop="0.041"
|
134 |
-
--learning_rate="2.34e-4"
|
135 |
-
--mask_time_prob="0.082"
|
136 |
-
--warmup_steps="250"
|
137 |
|
138 |
All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
|
|
|
1 |
+
---
|
2 |
language: tr
|
3 |
datasets:
|
4 |
- common_voice
|
|
|
52 |
# Preprocessing the datasets.
|
53 |
# We need to read the aduio files as arrays
|
54 |
def speech_file_to_array_fn(batch):
|
55 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
56 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
57 |
+
\treturn batch
|
58 |
|
59 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
60 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
61 |
|
62 |
with torch.no_grad():
|
63 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
64 |
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
|
|
|
88 |
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
|
89 |
model.to("cuda")
|
90 |
|
91 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
+
\tbatch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower())
|
98 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
99 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
+
\treturn batch
|
101 |
|
102 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
103 |
|
104 |
# Preprocessing the datasets.
|
105 |
# We need to read the aduio files as arrays
|
106 |
def evaluate(batch):
|
107 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
108 |
|
109 |
+
\twith torch.no_grad():
|
110 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
111 |
|
112 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
113 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
114 |
+
\treturn batch
|
115 |
|
116 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
117 |
|
|
|
124 |
unicode_tr package is used for converting sentences to lower case since regular lower() does not work well with Turkish.
|
125 |
|
126 |
Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. Best model out of the 5 trainings is uploaded. Training arguments:
|
127 |
+
--num_train_epochs="30" \\
|
128 |
+
--per_device_train_batch_size="32" \\
|
129 |
+
--evaluation_strategy="steps" \\
|
130 |
+
--activation_dropout="0.055" \\
|
131 |
+
--attention_dropout="0.094" \\
|
132 |
+
--feat_proj_dropout="0.04" \\
|
133 |
+
--hidden_dropout="0.047" \\
|
134 |
+
--layerdrop="0.041" \\
|
135 |
+
--learning_rate="2.34e-4" \\
|
136 |
+
--mask_time_prob="0.082" \\
|
137 |
+
--warmup_steps="250" \\
|
138 |
|
139 |
All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
|