--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-finetuned-autext24-subtask2 results: [] --- # bert-base-multilingual-cased-finetuned-autext24-subtask2 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6810 - Accuracy: 0.8277 - F1: 0.8292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 1286 | 0.8225 | 0.6975 | 0.6959 | | 0.6361 | 2.0 | 2572 | 0.5674 | 0.7926 | 0.7923 | | 0.6361 | 3.0 | 3858 | 0.5711 | 0.8153 | 0.8179 | | 0.2198 | 4.0 | 5144 | 0.5846 | 0.8296 | 0.8313 | | 0.2198 | 5.0 | 6430 | 0.6810 | 0.8277 | 0.8292 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1