File size: 1,900 Bytes
168ef09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- boolq
metrics:
- accuracy
model_index:
- name: distilbert-base-uncased-boolq
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: boolq
type: boolq
args: default
metric:
name: Accuracy
type: accuracy
value: 0.7314984709480122
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-boolq
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the boolq dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2071
- Accuracy: 0.7315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6506 | 1.0 | 531 | 0.6075 | 0.6681 |
| 0.575 | 2.0 | 1062 | 0.5816 | 0.6978 |
| 0.4397 | 3.0 | 1593 | 0.6137 | 0.7253 |
| 0.2524 | 4.0 | 2124 | 0.8124 | 0.7466 |
| 0.126 | 5.0 | 2655 | 1.1437 | 0.7370 |
### Framework versions
- Transformers 4.8.2
- Pytorch 1.8.1+cu111
- Datasets 1.8.0
- Tokenizers 0.10.3
|