anantoj commited on
Commit
ac4fd85
โ€ข
1 Parent(s): 64a9d4e

Training in progress, step 500

Browse files
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ checkpoint-*/
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 1205, "</s>": 1206}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-1b",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 1024,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1280,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 5120,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.0,
62
+ "mask_feature_length": 64,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.25,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.75,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 48,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1280,
79
+ "pad_token_id": 1204,
80
+ "proj_codevector_dim": 1024,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 1207,
106
+ "xvector_output_dim": 512
107
+ }
nohup.out ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0,
7
+ "return_attention_mask": true,
8
+ "sampling_rate": 16000
9
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:450eabd0a5373e1ecd8ce2213749283b3b63609903c85ed7ae272817327b3b59
3
+ size 3856497393
run.sh ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name="kresnik/zeroth_korean" \
3
+ --model_name_or_path="facebook/wav2vec2-xls-r-1b" \
4
+ --dataset_config_name="clean" \
5
+ --output_dir="./" \
6
+ --overwrite_output_dir \
7
+ --num_train_epochs="50" \
8
+ --per_device_train_batch_size="8" \
9
+ --per_device_eval_batch_size="8" \
10
+ --gradient_accumulation_steps="4" \
11
+ --3="7.5e-5" \
12
+ --warmup_steps="2000" \
13
+ --length_column_name="input_length" \
14
+ --evaluation_strategy="steps" \
15
+ --text_column_name="text" \
16
+ --chars_to_ignore , ? . ! \- \; \: \" โ€œ % โ€˜ โ€ ๏ฟฝ โ€” โ€™ โ€ฆ โ€“ \
17
+ --save_steps="500" \
18
+ --eval_steps="500" \
19
+ --logging_steps="100" \
20
+ --layerdrop="0.0" \
21
+ --activation_dropout="0.1" \
22
+ --save_total_limit="3" \
23
+ --freeze_feature_encoder \
24
+ --feat_proj_dropout="0.0" \
25
+ --mask_time_prob="0.75" \
26
+ --mask_time_length="10" \
27
+ --mask_feature_prob="0.25" \
28
+ --mask_feature_length="64" \
29
+ --gradient_checkpointing \
30
+ --use_auth_token \
31
+ --fp16 \
32
+ --group_by_length \
33
+ --do_train --do_eval \
34
+ --push_to_hub
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a ๐Ÿค— Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+
51
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
52
+ check_min_version("4.17.0.dev0")
53
+
54
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
55
+
56
+
57
+ logger = logging.getLogger(__name__)
58
+
59
+
60
+ def list_field(default=None, metadata=None):
61
+ return field(default_factory=lambda: default, metadata=metadata)
62
+
63
+
64
+ @dataclass
65
+ class ModelArguments:
66
+ """
67
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
68
+ """
69
+
70
+ model_name_or_path: str = field(
71
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
72
+ )
73
+ tokenizer_name_or_path: Optional[str] = field(
74
+ default=None,
75
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
76
+ )
77
+ cache_dir: Optional[str] = field(
78
+ default=None,
79
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
80
+ )
81
+ freeze_feature_encoder: bool = field(
82
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
83
+ )
84
+ attention_dropout: float = field(
85
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
86
+ )
87
+ activation_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
89
+ )
90
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
91
+ hidden_dropout: float = field(
92
+ default=0.0,
93
+ metadata={
94
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
95
+ },
96
+ )
97
+ final_dropout: float = field(
98
+ default=0.0,
99
+ metadata={"help": "The dropout probability for the final projection layer."},
100
+ )
101
+ mask_time_prob: float = field(
102
+ default=0.05,
103
+ metadata={
104
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
105
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
106
+ "vectors will be masked along the time axis."
107
+ },
108
+ )
109
+ mask_time_length: int = field(
110
+ default=10,
111
+ metadata={"help": "Length of vector span to mask along the time axis."},
112
+ )
113
+ mask_feature_prob: float = field(
114
+ default=0.0,
115
+ metadata={
116
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
117
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
118
+ },
119
+ )
120
+ mask_feature_length: int = field(
121
+ default=10,
122
+ metadata={"help": "Length of vector span to mask along the feature axis."},
123
+ )
124
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
125
+ ctc_loss_reduction: Optional[str] = field(
126
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
127
+ )
128
+
129
+
130
+ @dataclass
131
+ class DataTrainingArguments:
132
+ """
133
+ Arguments pertaining to what data we are going to input our model for training and eval.
134
+
135
+ Using `HfArgumentParser` we can turn this class
136
+ into argparse arguments to be able to specify them on
137
+ the command line.
138
+ """
139
+
140
+ dataset_name: str = field(
141
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
142
+ )
143
+ dataset_config_name: str = field(
144
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
+ )
146
+ train_split_name: str = field(
147
+ default="train",
148
+ metadata={
149
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
150
+ },
151
+ )
152
+ eval_split_name: str = field(
153
+ default="test",
154
+ metadata={
155
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
156
+ },
157
+ )
158
+ audio_column_name: str = field(
159
+ default="audio",
160
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
161
+ )
162
+ text_column_name: str = field(
163
+ default="text",
164
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
165
+ )
166
+ overwrite_cache: bool = field(
167
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
168
+ )
169
+ preprocessing_num_workers: Optional[int] = field(
170
+ default=None,
171
+ metadata={"help": "The number of processes to use for the preprocessing."},
172
+ )
173
+ max_train_samples: Optional[int] = field(
174
+ default=None,
175
+ metadata={
176
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
177
+ "value if set."
178
+ },
179
+ )
180
+ max_eval_samples: Optional[int] = field(
181
+ default=None,
182
+ metadata={
183
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
184
+ "value if set."
185
+ },
186
+ )
187
+ chars_to_ignore: Optional[List[str]] = list_field(
188
+ default=None,
189
+ metadata={"help": "A list of characters to remove from the transcripts."},
190
+ )
191
+ eval_metrics: List[str] = list_field(
192
+ default=["wer"],
193
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
194
+ )
195
+ max_duration_in_seconds: float = field(
196
+ default=20.0,
197
+ metadata={
198
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
199
+ },
200
+ )
201
+ min_duration_in_seconds: float = field(
202
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
203
+ )
204
+ preprocessing_only: bool = field(
205
+ default=False,
206
+ metadata={
207
+ "help": "Whether to only do data preprocessing and skip training. "
208
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
209
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
210
+ "so that the cached datasets can consequently be loaded in distributed training"
211
+ },
212
+ )
213
+ use_auth_token: bool = field(
214
+ default=False,
215
+ metadata={
216
+ "help": "If :obj:`True`, will use the token generated when running"
217
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
218
+ },
219
+ )
220
+ unk_token: str = field(
221
+ default="[UNK]",
222
+ metadata={"help": "The unk token for the tokenizer"},
223
+ )
224
+ pad_token: str = field(
225
+ default="[PAD]",
226
+ metadata={"help": "The padding token for the tokenizer"},
227
+ )
228
+ word_delimiter_token: str = field(
229
+ default="|",
230
+ metadata={"help": "The word delimiter token for the tokenizer"},
231
+ )
232
+ phoneme_language: Optional[str] = field(
233
+ default=None,
234
+ metadata={
235
+ "help": "The target language that should be used be"
236
+ " passed to the tokenizer for tokenization. Note that"
237
+ " this is only relevant if the model classifies the"
238
+ " input audio to a sequence of phoneme sequences."
239
+ },
240
+ )
241
+
242
+
243
+ @dataclass
244
+ class DataCollatorCTCWithPadding:
245
+ """
246
+ Data collator that will dynamically pad the inputs received.
247
+ Args:
248
+ processor (:class:`~transformers.AutoProcessor`)
249
+ The processor used for proccessing the data.
250
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
251
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
252
+ among:
253
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
254
+ sequence if provided).
255
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
256
+ maximum acceptable input length for the model if that argument is not provided.
257
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
258
+ different lengths).
259
+ max_length (:obj:`int`, `optional`):
260
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
261
+ max_length_labels (:obj:`int`, `optional`):
262
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
263
+ pad_to_multiple_of (:obj:`int`, `optional`):
264
+ If set will pad the sequence to a multiple of the provided value.
265
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
266
+ 7.5 (Volta).
267
+ """
268
+
269
+ processor: AutoProcessor
270
+ padding: Union[bool, str] = "longest"
271
+ pad_to_multiple_of: Optional[int] = None
272
+ pad_to_multiple_of_labels: Optional[int] = None
273
+
274
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
275
+ # split inputs and labels since they have to be of different lenghts and need
276
+ # different padding methods
277
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
278
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
279
+
280
+ batch = self.processor.pad(
281
+ input_features,
282
+ padding=self.padding,
283
+ pad_to_multiple_of=self.pad_to_multiple_of,
284
+ return_tensors="pt",
285
+ )
286
+
287
+ with self.processor.as_target_processor():
288
+ labels_batch = self.processor.pad(
289
+ label_features,
290
+ padding=self.padding,
291
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
292
+ return_tensors="pt",
293
+ )
294
+
295
+ # replace padding with -100 to ignore loss correctly
296
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
297
+
298
+ batch["labels"] = labels
299
+
300
+ return batch
301
+
302
+
303
+ def create_vocabulary_from_data(
304
+ datasets: DatasetDict,
305
+ word_delimiter_token: Optional[str] = None,
306
+ unk_token: Optional[str] = None,
307
+ pad_token: Optional[str] = None,
308
+ ):
309
+ # Given training and test labels create vocabulary
310
+ def extract_all_chars(batch):
311
+ all_text = " ".join(batch["target_text"])
312
+ vocab = list(set(all_text))
313
+ return {"vocab": [vocab], "all_text": [all_text]}
314
+
315
+ vocabs = datasets.map(
316
+ extract_all_chars,
317
+ batched=True,
318
+ batch_size=-1,
319
+ keep_in_memory=True,
320
+ remove_columns=datasets["train"].column_names,
321
+ )
322
+
323
+ # take union of all unique characters in each dataset
324
+ vocab_set = functools.reduce(
325
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
326
+ )
327
+
328
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
329
+
330
+ # replace white space with delimiter token
331
+ if word_delimiter_token is not None:
332
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
333
+ del vocab_dict[" "]
334
+
335
+ # add unk and pad token
336
+ if unk_token is not None:
337
+ vocab_dict[unk_token] = len(vocab_dict)
338
+
339
+ if pad_token is not None:
340
+ vocab_dict[pad_token] = len(vocab_dict)
341
+
342
+ return vocab_dict
343
+
344
+
345
+ def main():
346
+ # See all possible arguments in src/transformers/training_args.py
347
+ # or by passing the --help flag to this script.
348
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
349
+
350
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
351
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
352
+ # If we pass only one argument to the script and it's the path to a json file,
353
+ # let's parse it to get our arguments.
354
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
355
+ else:
356
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
357
+
358
+ # Detecting last checkpoint.
359
+ last_checkpoint = None
360
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
361
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
362
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
363
+ raise ValueError(
364
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
365
+ "Use --overwrite_output_dir to overcome."
366
+ )
367
+ elif last_checkpoint is not None:
368
+ logger.info(
369
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
370
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
371
+ )
372
+
373
+ # Setup logging
374
+ logging.basicConfig(
375
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
376
+ datefmt="%m/%d/%Y %H:%M:%S",
377
+ handlers=[logging.StreamHandler(sys.stdout)],
378
+ )
379
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
380
+
381
+ # Log on each process the small summary:
382
+ logger.warning(
383
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
384
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
385
+ )
386
+ # Set the verbosity to info of the Transformers logger (on main process only):
387
+ if is_main_process(training_args.local_rank):
388
+ transformers.utils.logging.set_verbosity_info()
389
+ logger.info("Training/evaluation parameters %s", training_args)
390
+
391
+ # Set seed before initializing model.
392
+ set_seed(training_args.seed)
393
+
394
+ # 1. First, let's load the dataset
395
+ raw_datasets = DatasetDict()
396
+
397
+ if training_args.do_train:
398
+ raw_datasets["train"] = load_dataset(
399
+ data_args.dataset_name,
400
+ data_args.dataset_config_name,
401
+ split=data_args.train_split_name,
402
+ use_auth_token=data_args.use_auth_token,
403
+ )
404
+
405
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
406
+ raise ValueError(
407
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
408
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
409
+ f"{', '.join(raw_datasets['train'].column_names)}."
410
+ )
411
+
412
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
413
+ raise ValueError(
414
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
415
+ "Make sure to set `--text_column_name` to the correct text column - one of "
416
+ f"{', '.join(raw_datasets['train'].column_names)}."
417
+ )
418
+
419
+ if data_args.max_train_samples is not None:
420
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
421
+
422
+ if training_args.do_eval:
423
+ raw_datasets["eval"] = load_dataset(
424
+ data_args.dataset_name,
425
+ data_args.dataset_config_name,
426
+ split=data_args.eval_split_name,
427
+ use_auth_token=data_args.use_auth_token,
428
+ )
429
+
430
+ if data_args.max_eval_samples is not None:
431
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
432
+
433
+ # 2. We remove some special characters from the datasets
434
+ # that make training complicated and do not help in transcribing the speech
435
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
436
+ # that could be easily picked up by the model
437
+ chars_to_ignore_regex = (
438
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
439
+ )
440
+ text_column_name = data_args.text_column_name
441
+
442
+ def remove_special_characters(batch):
443
+ if chars_to_ignore_regex is not None:
444
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
445
+ else:
446
+ batch["target_text"] = batch[text_column_name].lower() + " "
447
+ return batch
448
+
449
+ with training_args.main_process_first(desc="dataset map special characters removal"):
450
+ raw_datasets = raw_datasets.map(
451
+ remove_special_characters,
452
+ remove_columns=[text_column_name],
453
+ desc="remove special characters from datasets",
454
+ )
455
+
456
+ # save special tokens for tokenizer
457
+ word_delimiter_token = data_args.word_delimiter_token
458
+ unk_token = data_args.unk_token
459
+ pad_token = data_args.pad_token
460
+
461
+ # 3. Next, let's load the config as we might need it to create
462
+ # the tokenizer
463
+ # load config
464
+ config = AutoConfig.from_pretrained(
465
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
466
+ )
467
+
468
+ # 4. Next, if no tokenizer file is defined,
469
+ # we create the vocabulary of the model by extracting all unique characters from
470
+ # the training and evaluation datasets
471
+ # We need to make sure that only first rank saves vocabulary
472
+ # make sure all processes wait until vocab is created
473
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
474
+ tokenizer_kwargs = {}
475
+ if tokenizer_name_or_path is None:
476
+ # save vocab in training output dir
477
+ tokenizer_name_or_path = training_args.output_dir
478
+
479
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
480
+
481
+ with training_args.main_process_first():
482
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
483
+ os.remove(vocab_file)
484
+
485
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
486
+ if not os.path.isfile(vocab_file):
487
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
488
+ vocab_dict = create_vocabulary_from_data(
489
+ raw_datasets,
490
+ word_delimiter_token=word_delimiter_token,
491
+ unk_token=unk_token,
492
+ pad_token=pad_token,
493
+ )
494
+
495
+ # save vocab dict to be loaded into tokenizer
496
+ with open(vocab_file, "w") as file:
497
+ json.dump(vocab_dict, file)
498
+
499
+ # if tokenizer has just been created
500
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
501
+ tokenizer_kwargs = {
502
+ "config": config if config.tokenizer_class is not None else None,
503
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
504
+ "unk_token": unk_token,
505
+ "pad_token": pad_token,
506
+ "word_delimiter_token": word_delimiter_token,
507
+ }
508
+
509
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
510
+ # Note for distributed training, the .from_pretrained methods guarantee that only
511
+ # one local process can concurrently download model & vocab.
512
+
513
+ # load feature_extractor and tokenizer
514
+ tokenizer = AutoTokenizer.from_pretrained(
515
+ tokenizer_name_or_path,
516
+ use_auth_token=data_args.use_auth_token,
517
+ **tokenizer_kwargs,
518
+ )
519
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
520
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
521
+ )
522
+
523
+ # adapt config
524
+ config.update(
525
+ {
526
+ "feat_proj_dropout": model_args.feat_proj_dropout,
527
+ "attention_dropout": model_args.attention_dropout,
528
+ "hidden_dropout": model_args.hidden_dropout,
529
+ "final_dropout": model_args.final_dropout,
530
+ "mask_time_prob": model_args.mask_time_prob,
531
+ "mask_time_length": model_args.mask_time_length,
532
+ "mask_feature_prob": model_args.mask_feature_prob,
533
+ "mask_feature_length": model_args.mask_feature_length,
534
+ "gradient_checkpointing": training_args.gradient_checkpointing,
535
+ "layerdrop": model_args.layerdrop,
536
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
537
+ "pad_token_id": tokenizer.pad_token_id,
538
+ "vocab_size": len(tokenizer),
539
+ "activation_dropout": model_args.activation_dropout,
540
+ }
541
+ )
542
+
543
+ # create model
544
+ model = AutoModelForCTC.from_pretrained(
545
+ model_args.model_name_or_path,
546
+ cache_dir=model_args.cache_dir,
547
+ config=config,
548
+ use_auth_token=data_args.use_auth_token,
549
+ )
550
+
551
+ # freeze encoder
552
+ if model_args.freeze_feature_encoder:
553
+ model.freeze_feature_encoder()
554
+
555
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
556
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
557
+ # so that we just need to set the correct target sampling rate and normalize the input
558
+ # via the `feature_extractor`
559
+
560
+ # make sure that dataset decodes audio with correct sampling rate
561
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
562
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
563
+ raw_datasets = raw_datasets.cast_column(
564
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
565
+ )
566
+
567
+ # derive max & min input length for sample rate & max duration
568
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
569
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
570
+ audio_column_name = data_args.audio_column_name
571
+ num_workers = data_args.preprocessing_num_workers
572
+
573
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
574
+ phoneme_language = data_args.phoneme_language
575
+
576
+ # Preprocessing the datasets.
577
+ # We need to read the audio files as arrays and tokenize the targets.
578
+ def prepare_dataset(batch):
579
+ # load audio
580
+ sample = batch[audio_column_name]
581
+
582
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
583
+ batch["input_values"] = inputs.input_values[0]
584
+ batch["input_length"] = len(batch["input_values"])
585
+
586
+ # encode targets
587
+ additional_kwargs = {}
588
+ if phoneme_language is not None:
589
+ additional_kwargs["phonemizer_lang"] = phoneme_language
590
+
591
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
592
+ return batch
593
+
594
+ with training_args.main_process_first(desc="dataset map preprocessing"):
595
+ vectorized_datasets = raw_datasets.map(
596
+ prepare_dataset,
597
+ remove_columns=next(iter(raw_datasets.values())).column_names,
598
+ num_proc=num_workers,
599
+ desc="preprocess datasets",
600
+ )
601
+
602
+ def is_audio_in_length_range(length):
603
+ return length > min_input_length and length < max_input_length
604
+
605
+ # filter data that is shorter than min_input_length
606
+ vectorized_datasets = vectorized_datasets.filter(
607
+ is_audio_in_length_range,
608
+ num_proc=num_workers,
609
+ input_columns=["input_length"],
610
+ )
611
+
612
+ # 7. Next, we can prepare the training.
613
+ # Let's use word error rate (WER) as our evaluation metric,
614
+ # instantiate a data collator and the trainer
615
+
616
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
617
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
618
+
619
+ # for large datasets it is advised to run the preprocessing on a
620
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
621
+ # be a timeout when running the script in distributed mode.
622
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
623
+ # cached dataset
624
+ if data_args.preprocessing_only:
625
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
626
+ return
627
+
628
+ def compute_metrics(pred):
629
+ pred_logits = pred.predictions
630
+ pred_ids = np.argmax(pred_logits, axis=-1)
631
+
632
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
633
+
634
+ pred_str = tokenizer.batch_decode(pred_ids)
635
+ # we do not want to group tokens when computing the metrics
636
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
637
+
638
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
639
+
640
+ return metrics
641
+
642
+ # Now save everything to be able to create a single processor later
643
+ if is_main_process(training_args.local_rank):
644
+ # save feature extractor, tokenizer and config
645
+ feature_extractor.save_pretrained(training_args.output_dir)
646
+ tokenizer.save_pretrained(training_args.output_dir)
647
+ config.save_pretrained(training_args.output_dir)
648
+
649
+ try:
650
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
651
+ except (OSError, KeyError):
652
+ warnings.warn(
653
+ "Loading a processor from a feature extractor config that does not"
654
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
655
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
656
+ " `'processor_class': 'Wav2Vec2Processor'`",
657
+ FutureWarning,
658
+ )
659
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
660
+
661
+ # Instantiate custom data collator
662
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
663
+
664
+ # Initialize Trainer
665
+ trainer = Trainer(
666
+ model=model,
667
+ data_collator=data_collator,
668
+ args=training_args,
669
+ compute_metrics=compute_metrics,
670
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
671
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
672
+ tokenizer=feature_extractor,
673
+ )
674
+
675
+ # 8. Finally, we can start training
676
+
677
+ # Training
678
+ if training_args.do_train:
679
+
680
+ # use last checkpoint if exist
681
+ if last_checkpoint is not None:
682
+ checkpoint = last_checkpoint
683
+ elif os.path.isdir(model_args.model_name_or_path):
684
+ checkpoint = model_args.model_name_or_path
685
+ else:
686
+ checkpoint = None
687
+
688
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
689
+ trainer.save_model()
690
+
691
+ metrics = train_result.metrics
692
+ max_train_samples = (
693
+ data_args.max_train_samples
694
+ if data_args.max_train_samples is not None
695
+ else len(vectorized_datasets["train"])
696
+ )
697
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
698
+
699
+ trainer.log_metrics("train", metrics)
700
+ trainer.save_metrics("train", metrics)
701
+ trainer.save_state()
702
+
703
+ # Evaluation
704
+ results = {}
705
+ if training_args.do_eval:
706
+ logger.info("*** Evaluate ***")
707
+ metrics = trainer.evaluate()
708
+ max_eval_samples = (
709
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
710
+ )
711
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
712
+
713
+ trainer.log_metrics("eval", metrics)
714
+ trainer.save_metrics("eval", metrics)
715
+
716
+ # Write model card and (optionally) push to hub
717
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
718
+ kwargs = {
719
+ "finetuned_from": model_args.model_name_or_path,
720
+ "tasks": "speech-recognition",
721
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
722
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
723
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
724
+ }
725
+ if "common_voice" in data_args.dataset_name:
726
+ kwargs["language"] = config_name
727
+
728
+ if training_args.push_to_hub:
729
+ trainer.push_to_hub(**kwargs)
730
+ else:
731
+ trainer.create_model_card(**kwargs)
732
+
733
+ return results
734
+
735
+
736
+ if __name__ == "__main__":
737
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de06e6749143de4b91ac63e2bc1f701d3282dbb2db4432d379ca611227854de
3
+ size 2991
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"๊ฐ€": 1, "๊ฐ": 2, "๊ฐ„": 3, "๊ฐˆ": 4, "๊ฐ": 5, "๊ฐ‘": 6, "๊ฐ’": 7, "๊ฐ“": 8, "๊ฐ”": 9, "๊ฐ•": 10, "๊ฐ–": 11, "๊ฐ™": 12, "๊ฐš": 13, "๊ฐœ": 14, "๊ฐ": 15, "๊ฐ ": 16, "๊ฐค": 17, "๊ฐฏ": 18, "๊ฐฑ": 19, "๊ฑฐ": 20, "๊ฑฑ": 21, "๊ฑด": 22, "๊ฑท": 23, "๊ฑธ": 24, "๊ฒ€": 25, "๊ฒ": 26, "๊ฒƒ": 27, "๊ฒ‰": 28, "๊ฒŒ": 29, "๊ฒ": 30, "๊ฒŸ": 31, "๊ฒ ": 32, "๊ฒจ": 33, "๊ฒฉ": 34, "๊ฒช": 35, "๊ฒฌ": 36, "๊ฒฐ": 37, "๊ฒธ": 38, "๊ฒน": 39, "๊ฒผ": 40, "๊ฒฝ": 41, "๊ณ": 42, "๊ณ„": 43, "๊ณ ": 44, "๊ณก": 45, "๊ณค": 46, "๊ณง": 47, "๊ณจ": 48, "๊ณฐ": 49, "๊ณฑ": 50, "๊ณณ": 51, "๊ณต": 52, "๊ณถ": 53, "๊ณผ": 54, "๊ณฝ": 55, "๊ด€": 56, "๊ด„": 57, "๊ดŒ": 58, "๊ด‘": 59, "๊ด˜": 60, "๊ดญ": 61, "๊ดด": 62, "๊ต‰": 63, "๊ต": 64, "๊ตฌ": 65, "๊ตญ": 66, "๊ตฐ": 67, "๊ตณ": 68, "๊ตด": 69, "๊ตต": 70, "๊ตถ": 71, "๊ตฝ": 72, "๊ตฟ": 73, "๊ถ": 74, "๊ถˆ": 75, "๊ถŒ": 76, "๊ถ": 77, "๊ถค": 78, "๊ท€": 79, "๊ทœ": 80, "๊ท ": 81, "๊ทธ": 82, "๊ทน": 83, "๊ทผ": 84, "๊ธ€": 85, "๊ธˆ": 86, "๊ธ‰": 87, "๊ธ‹": 88, "๊ธ": 89, "๊ธฐ": 90, "๊ธด": 91, "๊ธธ": 92, "๊น€": 93, "๊น": 94, "๊นƒ": 95, "๊นŠ": 96, "๊นŒ": 97, "๊นŽ": 98, "๊น”": 99, "๊น": 100, "๊นก": 101, "๊นฅ": 102, "๊นจ": 103, "๊นฌ": 104, "๊บผ": 105, "๊ป": 106, "๊ป": 107, "๊ป‘": 108, "๊ป˜": 109, "๊ปด": 110, "๊ผˆ": 111, "๊ผฌ": 112, "๊ผญ": 113, "๊ผด": 114, "๊ผผ": 115, "๊ผฝ": 116, "๊ฝ": 117, "๊ฝ‚": 118, "๊ฝƒ": 119, "๊ฝ": 120, "๊ฝฅ": 121, "๊พธ": 122, "๊พผ": 123, "๊ฟ€": 124, "๊ฟ‡": 125, "๊ฟˆ": 126, "๊ฟŽ": 127, "๊ฟ”": 128, "๊ฟจ": 129, "๊ฟฐ": 130, "๋€Œ": 131, "๋€": 132, "๋„": 133, "๋…": 134, "๋ˆ": 135, "๋Š": 136, "๋Œ": 137, "๋“": 138, "๋”": 139, "๋—": 140, "๋": 141, "๋ผ": 142, "๋ฝ": 143, "๋‚€": 144, "๋‚Œ": 145, "๋‚˜": 146, "๋‚™": 147, "๋‚œ": 148, "๋‚ ": 149, "๋‚ก": 150, "๋‚จ": 151, "๋‚ฉ": 152, "๋‚ซ": 153, "๋‚ฌ": 154, "๋‚ญ": 155, "๋‚ฎ": 156, "๋‚ฏ": 157, "๋‚ณ": 158, "๋‚ด": 159, "๋‚ธ": 160, "๋‚ผ": 161, "๋ƒ„": 162, "๋ƒ…": 163, "๋ƒ‡": 164, "๋ƒˆ": 165, "๋ƒ‰": 166, "๋ƒ": 167, "๋ƒฅ": 168, "๋„ˆ": 169, "๋„‰": 170, "๋„Œ": 171, "๋„": 172, "๋„“": 173, "๋„˜": 174, "๋„›": 175, "๋„ฃ": 176, "๋„ค": 177, "๋„ฅ": 178, "๋„จ": 179, "๋„ท": 180, "๋…€": 181, "๋…": 182, "๋…„": 183, "๋…": 184, "๋…”": 185, "๋…•": 186, "๋…˜": 187, "๋…ธ": 188, "๋…น": 189, "๋…ผ": 190, "๋†€": 191, "๋†ˆ": 192, "๋†": 193, "๋†’": 194, "๋†“": 195, "๋†จ": 196, "๋‡Œ": 197, "๋‡จ": 198, "๋‡ฝ": 199, "๋ˆ„": 200, "๋ˆˆ": 201, "๋ˆŒ": 202, "๋ˆ ": 203, "๋‰œ": 204, "๋‰ด": 205, "๋Š‰": 206, "๋Š": 207, "๋Š”": 208, "๋Š˜": 209, "๋Š ": 210, "๋Šฅ": 211, "๋Šฆ": 212, "๋Šช": 213, "๋Šฌ": 214, "๋‹ˆ": 215, "๋‹‰": 216, "๋‹Œ": 217, "๋‹": 218, "๋‹˜": 219, "๋‹™": 220, "๋‹›": 221, "๋‹": 222, "๋‹ค": 223, "๋‹ฅ": 224, "๋‹ฆ": 225, "๋‹จ": 226, "๋‹ซ": 227, "๋‹ฌ": 228, "๋‹ญ": 229, "๋‹ฎ": 230, "๋‹ณ": 231, "๋‹ด": 232, "๋‹ต": 233, "๋‹ท": 234, "๋‹น": 235, "๋‹ฟ": 236, "๋Œ€": 237, "๋Œ": 238, "๋Œ": 239, "๋Œ“": 240, "๋”": 241, "๋•": 242, "๋˜": 243, "๋œ": 244, "๋Ÿ": 245, "๋ค": 246, "๋ง": 247, "๋ฉ": 248, "๋ซ": 249, "๋ฎ": 250, "๋ฐ": 251, "๋ด": 252, "๋ธ": 253, "๋Ž…": 254, "๋ŽŒ": 255, "๋„": 256, "๋…": 257, "๋ˆ": 258, "๋‹": 259, "๋Œ": 260, "๋”": 261, "๋•": 262, "๋—": 263, "๋™": 264, "๋›": 265, "๋ผ": 266, "๋": 267, "๋˜": 268, "๋œ": 269, "๋ ": 270, "๋จ": 271, "๋ฉ": 272, "๋‘": 273, "๋‘‘": 274, "๋‘”": 275, "๋‘˜": 276, "๋‘ ": 277, "๋‘ฅ": 278, "๋‘ฌ": 279, "๋’€": 280, "๋’ค": 281, "๋’ท": 282, "๋“€": 283, "๋“œ": 284, "๋“": 285, "๋“ ": 286, "๋“ฃ": 287, "๋“ค": 288, "๋“ฌ": 289, "๋“ญ": 290, "๋“ฏ": 291, "๋“ฑ": 292, "๋””": 293, "๋”˜": 294, "๋”œ": 295, "๋”ฅ": 296, "๋”จ": 297, "๋”ฉ": 298, "๋”ช": 299, "๋”ฐ": 300, "๋”ฑ": 301, "๋”ด": 302, "๋”ธ": 303, "๋•€": 304, "๋•„": 305, "๋•…": 306, "๋•Œ": 307, "๋•": 308, "๋• ": 309, "๋•ก": 310, "๋– ": 311, "๋–ก": 312, "๋–ค": 313, "๋–จ": 314, "๋–ด": 315, "๋–ป": 316, "๋–ผ": 317, "๋—„": 318, "๋˜": 319, "๋˜‘": 320, "๋˜ฅ": 321, "๋šœ": 322, "๋š": 323, "๋šซ": 324, "๋›ฐ": 325, "๋›ด": 326, "๋œจ": 327, "๋œฏ": 328, "๋œธ": 329, "๋œป": 330, "๋„": 331, "๋”": 332, "๋ ": 333, "๋ค": 334, "๋จ": 335, "๋ต": 336, "๋ผ": 337, "๋ฝ": 338, "๋ž€": 339, "๋ž„": 340, "๋žŒ": 341, "๋ž": 342, "๋ž": 343, "๋ž‘": 344, "๋ž˜": 345, "๋ž™": 346, "๋žœ": 347, "๋žจ": 348, "๋žซ": 349, "๋žฌ": 350, "๋žญ": 351, "๋žด": 352, "๋žต": 353, "๋Ÿ‰": 354, "๋Ÿฌ": 355, "๋Ÿญ": 356, "๋Ÿฐ": 357, "๋Ÿด": 358, "๋Ÿผ": 359, "๋Ÿฝ": 360, "๋ €": 361, "๋ ": 362, "๋ ‡": 363, "๋ ˆ": 364, "๋ ‰": 365, "๋ Œ": 366, "๋ ˜": 367, "๋ ›": 368, "๋ ค": 369, "๋ ฅ": 370, "๋ จ": 371, "๋ ฌ": 372, "๋ ด": 373, "๋ ต": 374, "๋ ท": 375, "๋ ธ": 376, "๋ น": 377, "๋ก€": 378, "๋กœ": 379, "๋ก": 380, "๋ก ": 381, "๋กค": 382, "๋กฌ": 383, "๋กญ": 384, "๋กฏ": 385, "๋กฑ": 386, "๋ขฐ": 387, "๋ฃŒ": 388, "๋ฃก": 389, "๋ฃจ": 390, "๋ฃฌ": 391, "๋ฃฐ": 392, "๋ฃธ": 393, "๋ฃน": 394, "๋ค„": 395, "๋ค˜": 396, "๋คผ": 397, "๋ฅ˜": 398, "๋ฅ™": 399, "๋ฅœ": 400, "๋ฅ ": 401, "๋ฅญ": 402, "๋ฅด": 403, "๋ฅต": 404, "๋ฅธ": 405, "๋ฅผ": 406, "๋ฆ„": 407, "๋ฆ…": 408, "๋ฆ‡": 409, "๋ฆ‰": 410, "๋ฆŽ": 411, "๋ฆฌ": 412, "๋ฆญ": 413, "๋ฆฐ": 414, "๋ฆด": 415, "๋ฆผ": 416, "๋ฆฝ": 417, "๋ฆฟ": 418, "๋ง": 419, "๋งˆ": 420, "๋ง‰": 421, "๋งŒ": 422, "๋งŽ": 423, "๋ง": 424, "๋ง": 425, "๋ง‘": 426, "๋ง˜": 427, "๋ง™": 428, "๋ง›": 429, "๋ง": 430, "๋งž": 431, "๋งก": 432, "๋งค": 433, "๋งฅ": 434, "๋งจ": 435, "๋งน": 436, "๋งบ": 437, "๋จธ": 438, "๋จน": 439, "๋จผ": 440, "๋ฉ€": 441, "๋ฉˆ": 442, "๋ฉ‹": 443, "๋ฉ": 444, "๋ฉ”": 445, "๋ฉ•": 446, "๋ฉ˜": 447, "๋ฉœ": 448, "๋ฉง": 449, "๋ฉฐ": 450, "๋ฉด": 451, "๋ฉธ": 452, "๋ช…": 453, "๋ช‡": 454, "๋ชจ": 455, "๋ชฉ": 456, "๋ชซ": 457, "๋ชฌ": 458, "๋ชฐ": 459, "๋ชธ": 460, "๋ชป": 461, "๋ชฝ": 462, "๋ฌ˜": 463, "๋ฌด": 464, "๋ฌต": 465, "๋ฌถ": 466, "๋ฌธ": 467, "๋ฌป": 468, "๋ฌผ": 469, "๋ญ„": 470, "๋ญ‡": 471, "๋ญ": 472, "๋ญ”": 473, "๋ญ˜": 474, "๋ฎค": 475, "๋ฎฌ": 476, "๋ฏ€": 477, "๋ฏˆ": 478, "๋ฏธ": 479, "๋ฏน": 480, "๋ฏผ": 481, "๋ฏฟ": 482, "๋ฐ€": 483, "๋ฐ‹": 484, "๋ฐŒ": 485, "๋ฐ": 486, "๋ฐ": 487, "๋ฐ‘": 488, "๋ฐ”": 489, "๋ฐ•": 490, "๋ฐ–": 491, "๋ฐ˜": 492, "๋ฐ›": 493, "๋ฐœ": 494, "๋ฐ": 495, "๋ฐค": 496, "๋ฐฅ": 497, "๋ฐฉ": 498, "๋ฐญ": 499, "๋ฐฐ": 500, "๋ฐฑ": 501, "๋ฐด": 502, "๋ฑ€": 503, "๋ฑƒ": 504, "๋ฑ…": 505, "๋ฒ„": 506, "๋ฒ…": 507, "๋ฒˆ": 508, "๋ฒŒ": 509, "๋ฒ”": 510, "๋ฒ•": 511, "๋ฒ—": 512, "๋ฒš": 513, "๋ฒ ": 514, "๋ฒค": 515, "๋ฒจ": 516, "๋ฒณ": 517, "๋ฒผ": 518, "๋ฒฝ": 519, "๋ณ€": 520, "๋ณ„": 521, "๋ณ": 522, "๋ณ": 523, "๋ณ‘": 524, "๋ณ•": 525, "๋ณด": 526, "๋ณต": 527, "๋ณถ": 528, "๋ณธ": 529, "๋ณผ": 530, "๋ด„": 531, "๋ด…": 532, "๋ด‡": 533, "๋ด‰": 534, "๋ด": 535, "๋ดค": 536, "๋ตˆ": 537, "๋ต™": 538, "๋ถ€": 539, "๋ถ": 540, "๋ถ„": 541, "๋ถˆ": 542, "๋ถ‰": 543, "๋ถ": 544, "๋ถ“": 545, "๋ถ•": 546, "๋ถ™": 547, "๋ท”": 548, "๋ทฐ": 549, "๋ธŒ": 550, "๋ธ": 551, "๋ธ”": 552, "๋น„": 553, "๋น…": 554, "๋นˆ": 555, "๋นŒ": 556, "๋น—": 557, "๋น™": 558, "๋นš": 559, "๋น›": 560, "๋น ": 561, "๋นจ": 562, "๋นต": 563, "๋นผ": 564, "๋บ€": 565, "๋บŒ": 566, "๋บ": 567, "๋บ‘": 568, "๋ป": 569, "๋ป‘": 570, "๋ป”": 571, "๋ป—": 572, "๋ป˜": 573, "๋ผˆ": 574, "๋ฝ€": 575, "๋ฝ‘": 576, "๋ฝ•": 577, "๋ฟŒ": 578, "๋ฟ": 579, "๋ฟœ": 580, "์˜": 581, "์œ": 582, "์ฉ": 583, "์‚": 584, "์‚ฌ": 585, "์‚ญ": 586, "์‚ฐ": 587, "์‚ด": 588, "์‚ถ": 589, "์‚ผ": 590, "์‚ฝ": 591, "์‚ฟ": 592, "์ƒ€": 593, "์ƒ": 594, "์ƒˆ": 595, "์ƒ‰": 596, "์ƒŒ": 597, "์ƒ": 598, "์ƒ˜": 599, "์ƒ": 600, "์ƒค": 601, "์ƒฌ": 602, "์ƒต": 603, "์ƒท": 604, "์„œ": 605, "์„": 606, "์„ž": 607, "์„ ": 608, "์„ฃ": 609, "์„ค": 610, "์„ฌ": 611, "์„ญ": 612, "์„ฏ": 613, "์„ฐ": 614, "์„ฑ": 615, "์„ธ": 616, "์„น": 617, "์„ผ": 618, "์…€": 619, "์…ˆ": 620, "์…‰": 621, "์…‹": 622, "์…”": 623, "์…˜": 624, "์…œ": 625, "์…จ": 626, "์…ฐ": 627, "์†Œ": 628, "์†": 629, "์†": 630, "์†”": 631, "์†œ": 632, "์†Ÿ": 633, "์†ก": 634, "์†ฅ": 635, "์‡„": 636, "์‡ ": 637, "์‡ค": 638, "์‡ผ": 639, "์ˆ": 640, "์ˆ˜": 641, "์ˆ™": 642, "์ˆœ": 643, "์ˆ ": 644, "์ˆจ": 645, "์ˆญ": 646, "์ˆฒ": 647, "์‰ฌ": 648, "์‰ฐ": 649, "์‰ผ": 650, "์‰ฝ": 651, "์Šˆ": 652, "์Š": 653, "์Šค": 654, "์Šจ": 655, "์Šฌ": 656, "์Šด": 657, "์Šต": 658, "์Šท": 659, "์Šน": 660, "์‹œ": 661, "์‹": 662, "์‹ ": 663, "์‹ค": 664, "์‹ซ": 665, "์‹ฌ": 666, "์‹ญ": 667, "์‹ฑ": 668, "์‹ถ": 669, "์‹ธ": 670, "์‹น": 671, "์‹ผ": 672, "์Œ€": 673, "์Œˆ": 674, "์ŒŒ": 675, "์Œ": 676, "์Œ“": 677, "์จ": 678, "์ฉ": 679, "์ฐ": 680, "์ผ": 681, "์˜": 682, "์œ": 683, "์Ÿ": 684, "์ ": 685, "์‘ค": 686, "์“ฐ": 687, "์“ด": 688, "์“ธ": 689, "์”€": 690, "์”": 691, "์”Œ": 692, "์”จ": 693, "์”ฉ": 694, "์”ฌ": 695, "์”ธ": 696, "์”ป": 697, "์•„": 698, "์•…": 699, "์•ˆ": 700, "์•‰": 701, "์•Š": 702, "์•Œ": 703, "์•“": 704, "์•”": 705, "์••": 706, "์•—": 707, "์•˜": 708, "์•™": 709, "์•ž": 710, "์• ": 711, "์•ก": 712, "์•ค": 713, "์•จ": 714, "์•ฑ": 715, "์•ต": 716, "์•ผ": 717, "์•ฝ": 718, "์–‡": 719, "์–‘": 720, "์–—": 721, "์–˜": 722, "์–ด": 723, "์–ต": 724, "์–ธ": 725, "์–น": 726, "์–ป": 727, "์–ผ": 728, "์–ฝ": 729, "์—„": 730, "์—…": 731, "์—†": 732, "์—‡": 733, "์—ˆ": 734, "์—‰": 735, "์—Ž": 736, "์—": 737, "์—‘": 738, "์—”": 739, "์—˜": 740, "์— ": 741, "์—ก": 742, "์—ฃ": 743, "์—ฌ": 744, "์—ญ": 745, "์—ฐ": 746, "์—ด": 747, "์—ท": 748, "์—ผ": 749, "์—ฝ": 750, "์—ฟ": 751, "์˜€": 752, "์˜": 753, "์˜†": 754, "์˜ˆ": 755, "์˜›": 756, "์˜ค": 757, "์˜ฅ": 758, "์˜จ": 759, "์˜ฌ": 760, "์˜ฎ": 761, "์˜ณ": 762, "์˜ด": 763, "์˜ต": 764, "์˜ท": 765, "์˜น": 766, "์™€": 767, "์™„": 768, "์™ˆ": 769, "์™”": 770, "์™•": 771, "์™œ": 772, "์™ธ": 773, "์™ผ": 774, "์š”": 775, "์š•": 776, "์šฉ": 777, "์šฐ": 778, "์šฑ": 779, "์šด": 780, "์šธ": 781, "์›€": 782, "์›": 783, "์›ƒ": 784, "์›…": 785, "์›Œ": 786, "์›": 787, "์›”": 788, "์› ": 789, "์›จ": 790, "์›ฌ": 791, "์›น": 792, "์œ„": 793, "์œˆ": 794, "์œŒ": 795, "์œ—": 796, "์œ™": 797, "์œ ": 798, "์œก": 799, "์œค": 800, "์œจ": 801, "์œต": 802, "์œผ": 803, "์€": 804, "์„": 805, "์Œ": 806, "์": 807, "์‘": 808, "์˜": 809, "์ด": 810, "์ต": 811, "์ธ": 812, "์ผ": 813, "์ฝ": 814, "์žƒ": 815, "์ž„": 816, "์ž…": 817, "์ž‡": 818, "์žˆ": 819, "์ž‰": 820, "์žŠ": 821, "์žŽ": 822, "์ž": 823, "์ž‘": 824, "์ž”": 825, "์ž–": 826, "์ž˜": 827, "์ž ": 828, "์žก": 829, "์žฃ": 830, "์žฅ": 831, "์žฆ": 832, "์žฌ": 833, "์žญ": 834, "์žฐ": 835, "์žฝ": 836, "์Ÿ": 837, "์ €": 838, "์ ": 839, "์ „": 840, "์ ˆ": 841, "์ Š": 842, "์ ‹": 843, "์ ": 844, "์ ‘": 845, "์ “": 846, "์ •": 847, "์ –": 848, "์ œ": 849, "์ ": 850, "์  ": 851, "์ ค": 852, "์ ธ": 853, "์ ผ": 854, "์กŒ": 855, "์กฐ": 856, "์กฑ": 857, "์กด": 858, "์กธ": 859, "์ข€": 860, "์ข": 861, "์ข…": 862, "์ข‹": 863, "์ขŒ": 864, "์ฃ„": 865, "์ฃ ": 866, "์ฃผ": 867, "์ฃฝ": 868, "์ค€": 869, "์ค„": 870, "์ค": 871, "์ค‘": 872, "์ค˜": 873, "์คฌ": 874, "์ฅ": 875, "์ฅ”": 876, "์ฅ˜": 877, "์ฅฌ": 878, "์ฆˆ": 879, "์ฆ‰": 880, "์ฆŒ": 881, "์ฆ": 882, "์ฆ˜": 883, "์ฆ": 884, "์ง€": 885, "์ง": 886, "์ง„": 887, "์งˆ": 888, "์งŠ": 889, "์ง": 890, "์ง‘": 891, "์ง“": 892, "์ง•": 893, "์ง–": 894, "์ง™": 895, "์งš": 896, "์งœ": 897, "์ง": 898, "์งง": 899, "์งฌ": 900, "์งธ": 901, "์จŒ": 902, "์ฉŒ": 903, "์ฉ": 904, "์ฉ”": 905, "์ฉœ": 906, "์ชผ": 907, "์ชฝ": 908, "์ซ„": 909, "์ซ“": 910, "์ญ‰": 911, "์ฏค": 912, "์ฐŒ": 913, "์ฐ": 914, "์ฐ”": 915, "์ฐข": 916, "์ฐง": 917, "์ฐจ": 918, "์ฐฉ": 919, "์ฐฌ": 920, "์ฐฎ": 921, "์ฐฐ": 922, "์ฐธ": 923, "์ฐป": 924, "์ฐฝ": 925, "์ฐพ": 926, "์ฑ„": 927, "์ฑ…": 928, "์ฑŒ": 929, "์ฑ”": 930, "์ฑ™": 931, "์ฑ ": 932, "์ฒ˜": 933, "์ฒ™": 934, "์ฒœ": 935, "์ฒ ": 936, "์ฒจ": 937, "์ฒฉ": 938, "์ฒซ": 939, "์ฒญ": 940, "์ฒด": 941, "์ฒธ": 942, "์ฒผ": 943, "์ณ‡": 944, "์ณ": 945, "์ณค": 946, "์ดˆ": 947, "์ด‰": 948, "์ดŒ": 949, "์ด˜": 950, "์ด›": 951, "์ด": 952, "์ดจ": 953, "์ดฌ": 954, "์ตœ": 955, "์ถ”": 956, "์ถ•": 957, "์ถ˜": 958, "์ถœ": 959, "์ถค": 960, "์ถฉ": 961, "์ถฐ": 962, "์ทจ": 963, "์ธ ": 964, "์ธก": 965, "์ธฐ": 966, "์ธต": 967, "์น˜": 968, "์น™": 969, "์นœ": 970, "์น ": 971, "์นจ": 972, "์นฉ": 973, "์นซ": 974, "์นญ": 975, "์นด": 976, "์นธ": 977, "์นผ": 978, "์บ‰": 979, "์บ": 980, "์บ”": 981, "์บ˜": 982, "์บ ": 983, "์ปค": 984, "์ปฅ": 985, "์ปจ": 986, "์ปซ": 987, "์ปด": 988, "์ปต": 989, "์ปท": 990, "์ปธ": 991, "์ผ€": 992, "์ผˆ": 993, "์ผ": 994, "์ผ‘": 995, "์ผ“": 996, "์ผœ": 997, "์ผฐ": 998, "์ฝ”": 999, "์ฝ˜": 1000, "์ฝœ": 1001, "์ฝค": 1002, "์ฝฅ": 1003, "์ฝง": 1004, "์ฝฉ": 1005, "์พŒ": 1006, "์ฟ„": 1007, "์ฟ ": 1008, "์ฟก": 1009, "์ฟจ": 1010, "์ฟผ": 1011, "ํ€ด": 1012, "ํ": 1013, "ํฌ": 1014, "ํฐ": 1015, "ํด": 1016, "ํผ": 1017, "ํ‚ค": 1018, "ํ‚ฅ": 1019, "ํ‚จ": 1020, "ํ‚ฌ": 1021, "ํ‚ท": 1022, "ํ‚น": 1023, "ํƒ€": 1024, "ํƒ": 1025, "ํƒ„": 1026, "ํƒˆ": 1027, "ํƒ": 1028, "ํƒ‘": 1029, "ํƒ“": 1030, "ํƒ•": 1031, "ํƒœ": 1032, "ํƒ": 1033, "ํƒ ": 1034, "ํƒฌ": 1035, "ํƒฑ": 1036, "ํ„ฐ": 1037, "ํ„ฑ": 1038, "ํ„ด": 1039, "ํ„ธ": 1040, "ํ…ƒ": 1041, "ํ……": 1042, "ํ…Œ": 1043, "ํ…": 1044, "ํ…": 1045, "ํ…”": 1046, "ํ…œ": 1047, "ํ…ผ": 1048, "ํ† ": 1049, "ํ†ก": 1050, "ํ†ค": 1051, "ํ†จ": 1052, "ํ†ฐ": 1053, "ํ†ต": 1054, "ํ‡ด": 1055, "ํˆฌ": 1056, "ํˆด": 1057, "ํˆผ": 1058, "ํ‰": 1059, "ํŠ€": 1060, "ํŠœ": 1061, "ํŠฌ": 1062, "ํŠธ": 1063, "ํŠน": 1064, "ํŠผ": 1065, "ํŠฟ": 1066, "ํ‹€": 1067, "ํ‹ˆ": 1068, "ํ‹ฐ": 1069, "ํ‹ฑ": 1070, "ํ‹ด": 1071, "ํ‹ธ": 1072, "ํŒ€": 1073, "ํŒ…": 1074, "ํŒŒ": 1075, "ํŒ": 1076, "ํŒŽ": 1077, "ํŒ": 1078, "ํŒ”": 1079, "ํŒœ": 1080, "ํŒก": 1081, "ํŒจ": 1082, "ํŒฉ": 1083, "ํŒฌ": 1084, "ํŒฐ": 1085, "ํŒป": 1086, "ํŒฝ": 1087, "ํผ": 1088, "ํŽ€": 1089, "ํŽ„": 1090, "ํŽŒ": 1091, "ํŽ˜": 1092, "ํŽœ": 1093, "ํŽ ": 1094, "ํŽซ": 1095, "ํŽด": 1096, "ํŽธ": 1097, "ํŽผ": 1098, "ํ„": 1099, "ํˆ": 1100, "ํ‰": 1101, "ํ": 1102, "ํฌ": 1103, "ํญ": 1104, "ํฐ": 1105, "ํด": 1106, "ํผ": 1107, "ํ‘œ": 1108, "ํ‘ธ": 1109, "ํ‘น": 1110, "ํ‘ผ": 1111, "ํ’€": 1112, "ํ’ˆ": 1113, "ํ’‹": 1114, "ํ’": 1115, "ํ“จ": 1116, "ํ“ฐ": 1117, "ํ”„": 1118, "ํ”ˆ": 1119, "ํ”Œ": 1120, "ํ””": 1121, "ํ”ผ": 1122, "ํ”ฝ": 1123, "ํ•€": 1124, "ํ•„": 1125, "ํ•": 1126, "ํ•‘": 1127, "ํ•˜": 1128, "ํ•™": 1129, "ํ•œ": 1130, "ํ• ": 1131, "ํ•จ": 1132, "ํ•ฉ": 1133, "ํ•ซ": 1134, "ํ•ญ": 1135, "ํ•ด": 1136, "ํ•ต": 1137, "ํ•ธ": 1138, "ํ–‡": 1139, "ํ–ˆ": 1140, "ํ–‰": 1141, "ํ–ฅ": 1142, "ํ—ˆ": 1143, "ํ—Œ": 1144, "ํ—": 1145, "ํ—˜": 1146, "ํ—": 1147, "ํ—ค": 1148, "ํ—จ": 1149, "ํ—ฌ": 1150, "ํ—ด": 1151, "ํ—ท": 1152, "ํ˜€": 1153, "ํ˜": 1154, "ํ˜„": 1155, "ํ˜ˆ": 1156, "ํ˜": 1157, "ํ˜‘": 1158, "ํ˜”": 1159, "ํ˜•": 1160, "ํ˜œ": 1161, "ํ˜ธ": 1162, "ํ˜น": 1163, "ํ˜ผ": 1164, "ํ™€": 1165, "ํ™ˆ": 1166, "ํ™‰": 1167, "ํ™": 1168, "ํ™”": 1169, "ํ™•": 1170, "ํ™˜": 1171, "ํ™œ": 1172, "ํ™ฉ": 1173, "ํšŒ": 1174, "ํš": 1175, "ํšก": 1176, "ํšจ": 1177, "ํ›„": 1178, "ํ›ˆ": 1179, "ํ›Œ": 1180, "ํ›ค": 1181, "ํ›จ": 1182, "ํ›ผ": 1183, "ํœ˜": 1184, "ํœฉ": 1185, "ํœด": 1186, "ํ‰": 1187, "ํ": 1188, "ํ‘": 1189, "ํ”": 1190, "ํ˜": 1191, "ํ™": 1192, "ํ ": 1193, "ํก": 1194, "ํฅ": 1195, "ํฉ": 1196, "ํฌ": 1197, "ํฐ": 1198, "ํžˆ": 1199, "ํžŒ": 1200, "ํž": 1201, "ํž˜": 1202, "|": 0, "[UNK]": 1203, "[PAD]": 1204}