File size: 6,374 Bytes
de79e0d
b3d10d9
de79e0d
 
077ffa0
de79e0d
1ef4266
b3d10d9
de79e0d
b3d10d9
de79e0d
62bc986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de79e0d
 
 
 
 
 
 
077ffa0
de79e0d
077ffa0
 
de79e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language: ko
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- kresnik/zeroth_korean
model-index:
- name: Wav2Vec2 XLS-R 1B Korean
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: ko
    metrics:
    - name: Test WER
      type: wer
      value: 82.07
    - name: Test CER
      type: cer
      value: 42.12
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: ko
    metrics:
    - name: Test WER
      type: wer
      value: 82.09
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the KRESNIK/ZEROTH_KOREAN - CLEAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0639
- Wer: 0.0449

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.603         | 0.72  | 500   | 4.6572          | 0.9985 |
| 2.6314        | 1.44  | 1000  | 2.0424          | 0.9256 |
| 2.2708        | 2.16  | 1500  | 0.9889          | 0.6989 |
| 2.1769        | 2.88  | 2000  | 0.8366          | 0.6312 |
| 2.1142        | 3.6   | 2500  | 0.7555          | 0.5998 |
| 2.0084        | 4.32  | 3000  | 0.7144          | 0.6003 |
| 1.9272        | 5.04  | 3500  | 0.6311          | 0.5461 |
| 1.8687        | 5.75  | 4000  | 0.6252          | 0.5430 |
| 1.8186        | 6.47  | 4500  | 0.5491          | 0.4988 |
| 1.7364        | 7.19  | 5000  | 0.5463          | 0.4959 |
| 1.6809        | 7.91  | 5500  | 0.4724          | 0.4484 |
| 1.641         | 8.63  | 6000  | 0.4679          | 0.4461 |
| 1.572         | 9.35  | 6500  | 0.4387          | 0.4236 |
| 1.5256        | 10.07 | 7000  | 0.3970          | 0.4003 |
| 1.5044        | 10.79 | 7500  | 0.3690          | 0.3893 |
| 1.4563        | 11.51 | 8000  | 0.3752          | 0.3875 |
| 1.394         | 12.23 | 8500  | 0.3386          | 0.3567 |
| 1.3641        | 12.95 | 9000  | 0.3290          | 0.3467 |
| 1.2878        | 13.67 | 9500  | 0.2893          | 0.3135 |
| 1.2602        | 14.39 | 10000 | 0.2723          | 0.3029 |
| 1.2302        | 15.11 | 10500 | 0.2603          | 0.2989 |
| 1.1865        | 15.83 | 11000 | 0.2440          | 0.2794 |
| 1.1491        | 16.55 | 11500 | 0.2500          | 0.2788 |
| 1.093         | 17.27 | 12000 | 0.2279          | 0.2629 |
| 1.0367        | 17.98 | 12500 | 0.2076          | 0.2443 |
| 0.9954        | 18.7  | 13000 | 0.1844          | 0.2259 |
| 0.99          | 19.42 | 13500 | 0.1794          | 0.2179 |
| 0.9385        | 20.14 | 14000 | 0.1765          | 0.2122 |
| 0.8952        | 20.86 | 14500 | 0.1706          | 0.1974 |
| 0.8841        | 21.58 | 15000 | 0.1791          | 0.1969 |
| 0.847         | 22.3  | 15500 | 0.1780          | 0.2060 |
| 0.8669        | 23.02 | 16000 | 0.1608          | 0.1862 |
| 0.8066        | 23.74 | 16500 | 0.1447          | 0.1626 |
| 0.7908        | 24.46 | 17000 | 0.1457          | 0.1655 |
| 0.7459        | 25.18 | 17500 | 0.1350          | 0.1445 |
| 0.7218        | 25.9  | 18000 | 0.1276          | 0.1421 |
| 0.703         | 26.62 | 18500 | 0.1177          | 0.1302 |
| 0.685         | 27.34 | 19000 | 0.1147          | 0.1305 |
| 0.6811        | 28.06 | 19500 | 0.1128          | 0.1244 |
| 0.6444        | 28.78 | 20000 | 0.1120          | 0.1213 |
| 0.6323        | 29.5  | 20500 | 0.1137          | 0.1166 |
| 0.5998        | 30.22 | 21000 | 0.1051          | 0.1107 |
| 0.5706        | 30.93 | 21500 | 0.1035          | 0.1037 |
| 0.5555        | 31.65 | 22000 | 0.1031          | 0.0927 |
| 0.5389        | 32.37 | 22500 | 0.0997          | 0.0900 |
| 0.5201        | 33.09 | 23000 | 0.0920          | 0.0912 |
| 0.5146        | 33.81 | 23500 | 0.0929          | 0.0947 |
| 0.515         | 34.53 | 24000 | 0.1000          | 0.0953 |
| 0.4743        | 35.25 | 24500 | 0.0922          | 0.0892 |
| 0.4707        | 35.97 | 25000 | 0.0852          | 0.0808 |
| 0.4456        | 36.69 | 25500 | 0.0855          | 0.0779 |
| 0.443         | 37.41 | 26000 | 0.0843          | 0.0738 |
| 0.4388        | 38.13 | 26500 | 0.0816          | 0.0699 |
| 0.4162        | 38.85 | 27000 | 0.0752          | 0.0645 |
| 0.3979        | 39.57 | 27500 | 0.0761          | 0.0621 |
| 0.3889        | 40.29 | 28000 | 0.0771          | 0.0625 |
| 0.3923        | 41.01 | 28500 | 0.0755          | 0.0598 |
| 0.3693        | 41.73 | 29000 | 0.0730          | 0.0578 |
| 0.3642        | 42.45 | 29500 | 0.0739          | 0.0598 |
| 0.3532        | 43.17 | 30000 | 0.0712          | 0.0553 |
| 0.3513        | 43.88 | 30500 | 0.0762          | 0.0516 |
| 0.3349        | 44.6  | 31000 | 0.0731          | 0.0504 |
| 0.3305        | 45.32 | 31500 | 0.0725          | 0.0507 |
| 0.3285        | 46.04 | 32000 | 0.0709          | 0.0489 |
| 0.3179        | 46.76 | 32500 | 0.0667          | 0.0467 |
| 0.3158        | 47.48 | 33000 | 0.0653          | 0.0494 |
| 0.3033        | 48.2  | 33500 | 0.0638          | 0.0456 |
| 0.3023        | 48.92 | 34000 | 0.0644          | 0.0464 |
| 0.2975        | 49.64 | 34500 | 0.0643          | 0.0455 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3.dev0
- Tokenizers 0.11.0