File size: 1,676 Bytes
8fcb38c
11bb9e2
8fcb38c
11bb9e2
8fcb38c
4805391
 
05510b7
 
 
8fcb38c
05510b7
11bb9e2
8fcb38c
 
05510b7
 
8fcb38c
05510b7
8fcb38c
4805391
8fcb38c
11bb9e2
 
8fcb38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05510b7
 
 
 
 
 
 
8fcb38c
 
 
05510b7
 
11bb9e2
 
 
 
 
8fcb38c
 
 
 
11bb9e2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: timm/resnet18.a1_in1k
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-beans
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-beans

This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0324
- Accuracy: 0.6917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0884        | 1.0   | 130  | 1.0903          | 0.4060   |
| 1.0721        | 2.0   | 260  | 1.0681          | 0.5188   |
| 1.0623        | 3.0   | 390  | 1.0460          | 0.6391   |
| 1.052         | 4.0   | 520  | 1.0410          | 0.6165   |
| 1.0519        | 5.0   | 650  | 1.0324          | 0.6917   |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.0
- Datasets 2.15.1.dev0
- Tokenizers 0.20.0