---
license: cc-by-nc-sa-4.0
language:
- en
- de
- zh
- fr
- nl
- el
- it
- es
- my
- he
- sv
- fa
- tr
- ur
library_name: transformers
pipeline_tag: audio-classification
tags:
- Speech Emotion Recognition
- SER
- Transformer
- HuBERT
- PyTorch
---
# **ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets**
Authors: Shahin Amiriparian, Filip Packań, Maurice Gerczuk, Björn W. Schuller
Fine-tuned and backbone extended [**HuBERT Large**](https://huggingface.co/facebook/hubert-large-ls960-ft) on EmoSet++, comprising 37 datasets, totaling 150,907 samples and spanning a cumulative duration of 119.5 hours.
The model is expecting a 3 second long raw waveform resampled to 16 kHz. The original 6 Ouput classes are combinations of low/high arousal and negative/neutral/positive
valence.
Further details are available in the corresponding [**paper**](https://arxiv.org/)
**Note**: This model is for research purpose only.
### EmoSet++ subsets used for fine-tuning the model:
| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ABC [[1]](#1)| AD [[2]](#2) | BES [[3]](#3) | CASIA [[4]](#4) | CVE [[5]](#5) |
| Crema-D [[6]](#6)| DES [[7]](#) | DEMoS [[8]](#8) | EA-ACT [[9]](#9) | EA-BMW [[9]](#9) |
| EA-WSJ [[9]](#9) | EMO-DB [[10]](#10) | EmoFilm [[11]](#11) | EmotiW-2014 [[12]](#12) | EMOVO [[13]](#13) |
| eNTERFACE [[14]](#14) | ESD [[15]](#15) | EU-EmoSS [[16]](#16) | EU-EV [[17]](#17) | FAU Aibo [[18]](#18) |
| GEMEP [[19]](#19) | GVESS [[20]](#20) | IEMOCAP [[21]](#21) | MES [[3]](#3) | MESD [[22]](#22) |
| MELD [[23]](#23)| PPMMK [[2]](#2) | RAVDESS [[24]](#24) | SAVEE [[25]](#25) | ShEMO [[26]](#26) |
| SmartKom [[27]](#27) | SIMIS [[28]](#28) | SUSAS [[29]](#29) | SUBSECO [[30]](#30) | TESS [[31]](#31) |
| TurkishEmo [[2]](#2) | Urdu [[32]](#32) | | | |
### Usage
```python
import torch
import torch.nn as nn
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
# CONFIG and MODEL SETUP
model_name = 'amiriparian/ExHuBERT'
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,revision="b158d45ed8578432468f3ab8d46cbe5974380812")
# Freezing half of the encoder for further transfer learning
model.freeze_og_encoder()
sampling_rate=16000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
```
### Citation Info
```
@inproceedings{Amiriparian24-EEH,
author = {Shahin Amiriparian and Filip Packan and Maurice Gerczuk and Bj\"orn W.\ Schuller},
title = {{ExHuBERT: Enhancing HuBERT Through Block Extension and Fine-Tuning on 37 Emotion Datasets}},
booktitle = {{Proc. INTERSPEECH}},
year = {2024},
editor = {},
volume = {},
series = {},
address = {Kos Island, Greece},
month = {September},
publisher = {ISCA},
}
```
### References
[1]
B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig. Audiovisual Behavior
Modeling by Combined Feature Spaces. In 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing - ICASSP ’07, volume 2, pages II–733–II–
736, Apr. 2007.
[2]
M. Gerczuk, S. Amiriparian, S. Ottl, and B. W. Schuller. EmoNet: A Transfer
Learning Framework for Multi-Corpus Speech Emotion Recognition. IEEE Trans-
actions on Affective Computing, 14(2):1472–1487, Apr. 2023.
[3]
T. L. Nwe, S. W. Foo, and L. C. De Silva. Speech emotion recognition using hidden
Markov models. Speech Communication, 41(4):603–623, Nov. 2003.
[4]
The selected speech emotion database of institute of automation chineseacademy of
sciences (casia). http://www.chineseldc.org/resource_info.php?rid=76. accessed March 2024.
[5]
P. Liu and M. D. Pell. Recognizing vocal emotions in Mandarin Chinese: A val-
idated database of Chinese vocal emotional stimuli. Behavior Research Methods,
44(4):1042–1051, Dec. 2012.
[6]
H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma.
CREMA-D: Crowd-sourced Emotional Multimodal Actors Dataset. IEEE transactions on affective computing, 5(4):377–390, 2014.
[7]
I. S. Engberg, A. V. Hansen, O. K. Andersen, and P. Dalsgaard. Design Record-
ing and Verification of a Danish Emotional Speech Database: Design Recording
and Verification of a Danish Emotional Speech Database. EUROSPEECH’97 : 5th
European Conference on Speech Communication and Technology, Patras, Rhodes,
Greece, 22-25 September 1997, pages Vol. 4, pp. 1695–1698, 1997.
[8]
E. Parada-Cabaleiro, G. Costantini, A. Batliner, M. Schmitt, and B. W. Schuller.
DEMoS: An Italian emotional speech corpus. Language Resources and Evaluation,
54(2):341–383, June 2020.
[9]
B. Schuller. Automatische Emotionserkennung Aus Sprachlicher Und Manueller
Interaktion. PhD thesis, Technische Universit¨at M¨unchen, 2006.
[10]
F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss. A database
of German emotional speech. In Interspeech 2005, pages 1517–1520. ISCA, Sept.
2005.
[11]
E. Parada-Cabaleiro, G. Costantini, A. Batliner, A. Baird, and B. Schuller.
Categorical vs Dimensional Perception of Italian Emotional Speech. In Interspeech 2018,
pages 3638–3642. ISCA, Sept. 2018.
[12]
A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. Gedeon. Emotion Recognition In
The Wild Challenge 2014: Baseline, Data and Protocol. In Proceedings of the 16th
International Conference on Multimodal Interaction, ICMI ’14, pages 461–466, New
York, NY, USA, Nov. 2014. Association for Computing Machinery.
[13]
G. Costantini, I. Iaderola, A. Paoloni, and M. Todisco. EMOVO Corpus: An Italian
Emotional Speech Database. In N. Calzolari, K. Choukri, T. Declerck, H. Loftsson,
B. Maegaard, J. Mariani, A. Moreno, J. Odijk, and S. Piperidis, editors, Proceed-
ings of the Ninth International Conference on Language Resources and Evaluation
(LREC’14), pages 3501–3504, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA).
[14]
O. Martin, I. Kotsia, B. Macq, and I. Pitas. The eNTERFACE’ 05 Audio-Visual
Emotion Database. In 22nd International Conference on Data Engineering Work-
shops (ICDEW’06), pages 8–8, Apr. 2006.
[15]
K. Zhou, B. Sisman, R. Liu, and H. Li. Seen and Unseen emotional style transfer
for voice conversion with a new emotional speech dataset, Feb. 2021.
[16]
H. O’Reilly, D. Pigat, S. Fridenson, S. Berggren, S. Tal, O. Golan, S. B¨olte, S. Baron-
Cohen, and D. Lundqvist. The EU-Emotion Stimulus Set: A validation study.
Behavior Research Methods, 48(2):567–576, June 2016.
[17]
A. Lassalle, D. Pigat, H. O’Reilly, S. Berggen, S. Fridenson-Hayo, S. Tal, S. Elfstr¨om,
A. R˚ade, O. Golan, S. B¨olte, S. Baron-Cohen, and D. Lundqvist. The EU-Emotion
Voice Database. Behavior Research Methods, 51(2):493–506, Apr. 2019.
[18]
A. Batliner, S. Steidl, and E. Noth. Releasing a thoroughly annotated and processed
spontaneous emotional database: The FAU Aibo Emotion Corpus. 2008.
[19]
K. R. Scherer, T. B¨anziger, and E. Roesch. A Blueprint for Affective Computing:
A Sourcebook and Manual. OUP Oxford, Sept. 2010.
[20]
R. Banse and K. R. Scherer. Acoustic profiles in vocal emotion expression. Journal
of Personality and Social Psychology, 70(3):614–636, 1996.
[21]
C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang,
S. Lee, and S. S. Narayanan. IEMOCAP: Interactive emotional dyadic motion
capture database. Language Resources and Evaluation, 42(4):335–359, Dec. 2008.
[22]
M. M. Duville, L. M. Alonso-Valerdi, and D. I. Ibarra-Zarate. The Mexican Emo-
tional Speech Database (MESD): Elaboration and assessment based on machine
learning. Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
International Conference, 2021:1644–1647, Nov. 2021.
[23]
S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, and R. Mihalcea. MELD:
A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations, June
2019.
[24]
S. R. Livingstone and F. A. Russo. The Ryerson Audio-Visual Database of Emo-
tional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal
expressions in North American English. PLOS ONE, 13(5):e0196391, May 2018.
[25]
S. Haq and P. J. B. Jackson. Speaker-dependent audio-visual emotion recognition.
In Proc. AVSP 2009, pages 53–58, 2009.
[26]
O. Mohamad Nezami, P. Jamshid Lou, and M. Karami. ShEMO: A large-scale
validated database for Persian speech emotion detection. Language Resources and
Evaluation, 53(1):1–16, Mar. 2019.
[27]
F. Schiel, S. Steininger, and U. T¨urk. The SmartKom Multimodal Corpus at BAS. In
M. Gonz´alez Rodr´ıguez and C. P. Suarez Araujo, editors, Proceedings of the Third
International Conference on Language Resources and Evaluation (LREC’02), Las
Palmas, Canary Islands - Spain, May 2002. European Language Resources Association (ELRA).
[28]
B. Schuller, F. Eyben, S. Can, and H. Feußner. Speech in Minimal Invasive Surgery - Towards an Affective Language Resource of Real-life Medical Operations. 2010.
[29]
J. H. L. Hansen and S. E. Bou-Ghazale. Getting started with SUSAS: A speech under
simulated and actual stress database. In Proc. Eurospeech 1997, pages 1743–1746,
1997.
[30]
S. Sultana, M. S. Rahman, M. R. Selim, and M. Z. Iqbal. SUST Bangla Emotional
Speech Corpus (SUBESCO): An audio-only emotional speech corpus for Bangla.
PLOS ONE, 16(4):e0250173, Apr. 2021.
[31]
M. K. Pichora-Fuller and K. Dupuis. Toronto emotional speech set (TESS), Feb.
2020.
[32]
S. Latif, A. Qayyum, M. Usman, and J. Qadir. Cross Lingual Speech Emotion
Recognition: Urdu vs. Western Languages. In 2018 International Conference on
Frontiers of Information Technology (FIT), pages 88–93, Dec. 2018.