|
from dataclasses import dataclass
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import HubertForSequenceClassification
|
|
from transformers.activations import ACT2FN
|
|
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
|
from transformers.file_utils import ModelOutput
|
|
from transformers.modeling_outputs import BaseModelOutput
|
|
from transformers.models.hubert import HubertConfig
|
|
from transformers.models.hubert.modeling_hubert import HubertPreTrainedModel, HubertFeatureEncoder, \
|
|
HubertFeatureProjection, _compute_mask_indices, \
|
|
HubertPositionalConvEmbedding, HubertAttention
|
|
import torch.nn.functional as F
|
|
from huggingface_hub import PyTorchModelHubMixin
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_HIDDEN_STATES_START_POSITION = 1
|
|
|
|
|
|
_CONFIG_FOR_DOC = "HubertConfig"
|
|
|
|
|
|
_CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft"
|
|
_EXPECTED_OUTPUT_SHAPE = [1, 292, 768]
|
|
|
|
|
|
_CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'"
|
|
_CTC_EXPECTED_LOSS = 22.68
|
|
|
|
|
|
_SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks"
|
|
_SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'"
|
|
_SEQ_CLASS_EXPECTED_LOSS = 8.53
|
|
|
|
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"facebook/hubert-base-ls960",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
class SwiGLU(nn.Module):
|
|
def forward(self, x):
|
|
x, gate = x.chunk(2, dim=-1)
|
|
return F.silu(gate) * x
|
|
|
|
|
|
@dataclass
|
|
class SpeechClassifierOutput(ModelOutput):
|
|
"""
|
|
Speech Classifier Output dataclass
|
|
"""
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: torch.FloatTensor = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
|
|
|
class ExHuBERTFeedForward(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
|
|
|
|
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
if isinstance(config.hidden_act, str):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.output_dropout = nn.Dropout(config.hidden_dropout)
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.intermediate_dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
hidden_states = self.intermediate_dropout(hidden_states)
|
|
|
|
hidden_states = self.output_dense(hidden_states)
|
|
hidden_states = self.output_dropout(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
|
|
class ExHuBERTEncoderLayer(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.attention = HubertAttention(
|
|
embed_dim=config.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
dropout=config.attention_dropout,
|
|
is_decoder=False,
|
|
)
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.feed_forward = ExHuBERTFeedForward(config)
|
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.gate_bb_linear = nn.Linear(config.hidden_size, config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: bool = False,
|
|
):
|
|
attn_residual = hidden_states
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
hidden_states, attn_weights, _ = self.attention(
|
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
|
)
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = attn_residual + hidden_states
|
|
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
|
|
|
hidden_states = self.gate_bb_linear(hidden_states)
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
class ExHuBERTEncoder(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
|
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.dropout = nn.Dropout(config.hidden_dropout)
|
|
self.layers = nn.ModuleList(
|
|
[ExHuBERTEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
|
)
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states,
|
|
attention_mask=None,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict=True,
|
|
):
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attentions = () if output_attentions else None
|
|
|
|
if attention_mask is not None:
|
|
|
|
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
|
|
hidden_states[~expand_attention_mask] = 0
|
|
|
|
|
|
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
|
|
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
|
|
attention_mask = attention_mask.expand(
|
|
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
|
|
)
|
|
|
|
position_embeddings = self.pos_conv_embed(hidden_states)
|
|
hidden_states = hidden_states + position_embeddings
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
|
|
|
skip = torch.zeros_like(hidden_states)
|
|
skip_bool = False
|
|
for layer in self.layers:
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
dropout_probability = torch.rand([])
|
|
|
|
|
|
skip_the_layer = False
|
|
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
|
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
return module(*inputs, output_attentions)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
)
|
|
else:
|
|
layer_outputs = layer(
|
|
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
|
)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if skip_the_layer:
|
|
layer_outputs = (None, None)
|
|
|
|
if output_attentions:
|
|
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
|
if skip_bool is True:
|
|
hidden_states = hidden_states + skip
|
|
|
|
skip_bool = False
|
|
else:
|
|
skip = hidden_states
|
|
skip_bool = True
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attentions,
|
|
)
|
|
|
|
|
|
class ExHuBERT_model_(HubertPreTrainedModel):
|
|
def __init__(self, config: HubertConfig):
|
|
super().__init__(config)
|
|
setattr(config, 'num_hidden_layers', 48)
|
|
self.config = config
|
|
self.feature_extractor = HubertFeatureEncoder(config)
|
|
self.feature_projection = HubertFeatureProjection(config)
|
|
|
|
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
|
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
|
|
|
self.encoder = ExHuBERTEncoder(config)
|
|
|
|
|
|
self.post_init()
|
|
|
|
|
|
def _mask_hidden_states(
|
|
self,
|
|
hidden_states: torch.FloatTensor,
|
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
):
|
|
"""
|
|
Masks extracted features along time axis and/or along feature axis according to
|
|
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
|
"""
|
|
|
|
|
|
if not getattr(self.config, "apply_spec_augment", True):
|
|
return hidden_states
|
|
|
|
|
|
batch_size, sequence_length, hidden_size = hidden_states.size()
|
|
|
|
if mask_time_indices is not None:
|
|
|
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
|
elif self.config.mask_time_prob > 0 and self.training:
|
|
mask_time_indices = _compute_mask_indices(
|
|
(batch_size, sequence_length),
|
|
mask_prob=self.config.mask_time_prob,
|
|
mask_length=self.config.mask_time_length,
|
|
attention_mask=attention_mask,
|
|
min_masks=self.config.mask_time_min_masks,
|
|
)
|
|
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
|
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
|
|
|
if self.config.mask_feature_prob > 0 and self.training:
|
|
|
|
mask_feature_indices = _compute_mask_indices(
|
|
(batch_size, hidden_size),
|
|
mask_prob=self.config.mask_feature_prob,
|
|
mask_length=self.config.mask_feature_length,
|
|
min_masks=self.config.mask_feature_min_masks,
|
|
)
|
|
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
|
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
|
hidden_states[mask_feature_indices] = 0
|
|
|
|
return hidden_states
|
|
|
|
def forward(
|
|
self,
|
|
input_values: Optional[torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
mask_time_indices: Optional[torch.FloatTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutput]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
extract_features = self.feature_extractor(input_values)
|
|
extract_features = extract_features.transpose(1, 2)
|
|
|
|
if attention_mask is not None:
|
|
|
|
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
|
|
|
hidden_states = self.feature_projection(extract_features)
|
|
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
|
|
|
encoder_outputs = self.encoder(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = encoder_outputs[0]
|
|
|
|
if not return_dict:
|
|
return (hidden_states,) + encoder_outputs[1:]
|
|
|
|
return BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=encoder_outputs.hidden_states,
|
|
attentions=encoder_outputs.attentions,
|
|
)
|
|
|
|
|
|
class ExHuBERT(HubertPreTrainedModel,PyTorchModelHubMixin):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
setattr(config, "num_labels", 6)
|
|
if hasattr(config, "add_adapter") and config.add_adapter:
|
|
raise ValueError(
|
|
"Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)"
|
|
)
|
|
self.hubert = ExHuBERT_model_(config)
|
|
num_layers = config.num_hidden_layers + 1
|
|
if config.use_weighted_layer_sum:
|
|
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
|
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
|
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def freeze_feature_encoder(self):
|
|
"""
|
|
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
|
not be updated during training.
|
|
"""
|
|
self.hubert.feature_extractor._freeze_parameters()
|
|
|
|
def freeze_base_model(self):
|
|
"""
|
|
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
|
be updated during training. Only the classification head will be updated.
|
|
"""
|
|
for param in self.hubert.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(
|
|
self,
|
|
input_values: Optional[torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
) -> Union[Tuple, SpeechClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
|
|
|
outputs = self.hubert(
|
|
input_values,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
if self.config.use_weighted_layer_sum:
|
|
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
|
hidden_states = torch.stack(hidden_states, dim=1)
|
|
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
|
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
|
else:
|
|
hidden_states = outputs[0]
|
|
|
|
hidden_states = self.projector(hidden_states)
|
|
if attention_mask is None:
|
|
pooled_output = hidden_states.mean(dim=1)
|
|
else:
|
|
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
|
hidden_states[~padding_mask] = 0.0
|
|
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
|
|
|
logits = self.classifier(pooled_output)
|
|
|
|
loss = None
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SpeechClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def freeze_og_encoder(self):
|
|
for param in self.hubert.encoder.layers[::2].parameters():
|
|
param.requires_grad = False
|
|
|
|
def print_trainable_parameters(model):
|
|
'''
|
|
prints all trainable parameters of a model
|
|
'''
|
|
trainable_params = 0
|
|
all_param = 0
|
|
for _, param in model.named_parameters():
|
|
all_param += param.numel()
|
|
if param.requires_grad:
|
|
trainable_params += param.numel()
|
|
print(
|
|
f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param:.2f}"
|
|
)
|
|
|
|
|