import numpy as np import cv2 import torch import time import torchvision import random def box_iou(box1, box2): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ def box_area(box): # box = 4xn return (box[2] - box[0]) * (box[3] - box[1]) area1 = box_area(box1.T) area2 = box_area(box2.T) # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) def plot_one_box(x, image, color=None, label=None, line_thickness=None): # Plots one bounding box on image img tl = line_thickness or round( 0.002 * (image.shape[0] + image.shape[1]) / 2) + 1 # line/font thickness color = color or [random.randint(0, 255) for _ in range(3)] c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) if label: tf = max(tl - 1, 1) # font thickness t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled cv2.putText(image, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) def clip_coords(boxes, img_shape): # Clip bounding xyxy bounding boxes to image shape (height, width) boxes[:, 0].clamp_(0, img_shape[1]) # x1 boxes[:, 1].clamp_(0, img_shape[0]) # y1 boxes[:, 2].clamp_(0, img_shape[1]) # x2 boxes[:, 3].clamp_(0, img_shape[0]) # y2 def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): # Rescale coords (xyxy) from img1_shape to img0_shape if ratio_pad is None: # calculate from img0_shape gain = max(img1_shape) / max(img0_shape) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / \ 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0][0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain clip_coords(coords, img0_shape) return coords def xywh2xyxy(x): # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where # xy1=top-left, xy2=bottom-right y = torch.zeros_like(x) if isinstance( x, torch.Tensor) else np.zeros_like(x) y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y return y def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle # https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \ new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 32), np.mod(dh, 32) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = new_shape ratio = new_shape[0] / shape[1], new_shape[1] / \ shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh) def non_max_suppression( prediction, conf_thres=0.1, iou_thres=0.6, multi_label=True, classes=None, agnostic=False): """ Performs Non-Maximum Suppression on inference results Returns detections with shape: nx6 (x1, y1, x2, y2, conf, cls) """ # Settings merge = True # merge for best mAP # (pixels) minimum and maximum box width and height min_wh, max_wh = 2, 4096 time_limit = 10.0 # seconds to quit after t = time.time() nc = prediction[0].shape[1] - 5 # number of classes multi_label &= nc > 1 # multiple labels per box output = [None] * prediction.shape[0] for xi, x in enumerate(prediction): # image index, image inference # Apply constraints x = x[x[:, 4] > conf_thres] # confidence x = x[((x[:, 2:4] > min_wh) & (x[:, 2:4] < max_wh)).all(1)] # If none remain process next image if not x.shape[0]: continue # Compute conf x[..., 5:] *= x[..., 4:5] # conf = obj_conf * cls_conf # Box (center x, center y, width, height) to (x1, y1, x2, y2) box = xywh2xyxy(x[:, :4]) # Detections matrix nx6 (xyxy, conf, cls) if multi_label: i, j = (x[:, 5:] > conf_thres).nonzero().t() x = torch.cat((box[i], x[i, j + 5].unsqueeze(1), j.float().unsqueeze(1)), 1) else: # best class only conf, j = x[:, 5:].max(1) x = torch.cat( (box, conf.unsqueeze(1), j.float().unsqueeze(1)), 1)[ conf > conf_thres] # Filter by class if classes: x = x[(j.view(-1, 1) == torch.tensor(classes, device=j.device)).any(1)] # Apply finite constraint # if not torch.isfinite(x).all(): # x = x[torch.isfinite(x).all(1)] # If none remain process next image n = x.shape[0] # number of boxes if not n: continue # Sort by confidence # x = x[x[:, 4].argsort(descending=True)] # Batched NMS c = x[:, 5] * 0 if agnostic else x[:, 5] # classes boxes, scores = x[:, :4].clone() + c.view(-1, 1) * \ max_wh, x[:, 4] # boxes (offset by class), scores i = torchvision.ops.boxes.nms(boxes, scores, iou_thres) if merge and ( 1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix weights = iou * scores[None] # box weights x[i, :4] = torch.mm(weights, x[:, :4]).float( ) / weights.sum(1, keepdim=True) # merged boxes # i = i[iou.sum(1) > 1] # require redundancy except BaseException: # https://github.com/ultralytics/yolov3/issues/1139 # print(x, i, x.shape, i.shape) pass output[xi] = x[i] if (time.time() - t) > time_limit: break # time limit exceeded return output