yolov3 / onnx_test.py
yixionghuo's picture
Update onnx_test.py
675b749
raw
history blame
45.9 kB
import argparse
import json
import os
from pathlib import Path
from tqdm import tqdm
import glob
import math
from PIL import ExifTags, Image
import shutil
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from utils import *
import onnxruntime
import matplotlib.pyplot as plt
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def create_folder(path='./new_folder'):
# Create folder
if os.path.exists(path):
shutil.rmtree(path) # delete output folder
os.makedirs(path) # make new output folder
def exif_size(img):
# Returns exif-corrected PIL size
s = img.size # (width, height)
try:
rotation = dict(img._getexif().items())[orientation]
if rotation == 6: # rotation 270
s = (s[1], s[0])
elif rotation == 8: # rotation 90
s = (s[1], s[0])
except BaseException:
pass
return s
def ap_per_class(tp, conf, pred_cls, target_cls):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Objectness value from 0-1 (nparray).
pred_cls: Predicted object classes (nparray).
target_cls: True object classes (nparray).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Sort by objectness
i = np.argsort(-conf)
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
# Find unique classes
unique_classes = np.unique(target_cls)
# Create Precision-Recall curve and compute AP for each class
pr_score = 0.1
# score to evaluate P and R
# https://github.com/ultralytics/yolov3/issues/898
# number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
s = [unique_classes.shape[0], tp.shape[1]]
ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
for ci, c in enumerate(unique_classes):
i = pred_cls == c
n_gt = (target_cls == c).sum() # Number of ground truth objects
n_p = i.sum() # Number of predicted objects
if n_p == 0 or n_gt == 0:
continue
else:
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (n_gt + 1e-16) # recall curve
# r at pr_score, negative x, xp because xp decreases
r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0])
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = np.interp(-pr_score, -conf[i],
precision[:, 0]) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
# Plot
# fig, ax = plt.subplots(1, 1, figsize=(5, 5))
# ax.plot(recall, precision)
# ax.set_xlabel('Recall')
# ax.set_ylabel('Precision')
# ax.set_xlim(0, 1.01)
# ax.set_ylim(0, 1.01)
# fig.tight_layout()
# fig.savefig('PR_curve.png', dpi=300)
# Compute F1 score (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + 1e-16)
return p, r, ap, f1, unique_classes.astype('int32')
def time_synchronized():
torch.cuda.synchronize() if torch.cuda.is_available() else None
return time.time()
def plot_images(
images,
targets,
paths=None,
fname='images.jpg',
names=None,
max_size=640,
max_subplots=16):
tl = 3 # line thickness
tf = max(tl - 1, 1) # font thickness
if os.path.isfile(fname): # do not overwrite
return None
if isinstance(images, torch.Tensor):
images = images.cpu().numpy()
if isinstance(targets, torch.Tensor):
targets = targets.cpu().numpy()
# un-normalise
if np.max(images[0]) <= 1:
images *= 255
bs, _, h, w = images.shape # batch size, _, height, width
bs = min(bs, max_subplots) # limit plot images
ns = np.ceil(bs ** 0.5) # number of subplots (square)
# Check if we should resize
scale_factor = max_size / max(h, w)
if scale_factor < 1:
h = math.ceil(scale_factor * h)
w = math.ceil(scale_factor * w)
# Empty array for output
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
# Fix class - colour map
prop_cycle = plt.rcParams['axes.prop_cycle']
# https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
def hex2rgb(h):
return tuple(
int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]
for i, img in enumerate(images):
if i == max_subplots: # if last batch has fewer images than we expect
break
block_x = int(w * (i // ns))
block_y = int(h * (i % ns))
img = img.transpose(1, 2, 0)
if scale_factor < 1:
img = cv2.resize(img, (w, h))
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
if len(targets) > 0:
image_targets = targets[targets[:, 0] == i]
boxes = xywh2xyxy(image_targets[:, 2:6]).T
classes = image_targets[:, 1].astype('int')
gt = image_targets.shape[1] == 6
# ground truth if no conf column
# check for confidence presence (gt vs pred)
conf = None if gt else image_targets[:, 6]
boxes[[0, 2]] *= w
boxes[[0, 2]] += block_x
boxes[[1, 3]] *= h
boxes[[1, 3]] += block_y
for j, box in enumerate(boxes.T):
cls = int(classes[j])
color = color_lut[cls % len(color_lut)]
cls = names[cls] if names else cls
if gt or conf[j] > 0.3: # 0.3 conf thresh
label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j])
plot_one_box(box, mosaic, label=label,
color=color, line_thickness=tl)
# Draw image filename labels
if paths is not None:
label = os.path.basename(paths[i])[:40] # trim to 40 char
t_size = cv2.getTextSize(
label, 0, fontScale=tl / 3, thickness=tf)[0]
cv2.putText(mosaic, label, (block_x +
5, block_y +
t_size[1] +
5), 0, tl /
3, [220, 220, 220], thickness=tf, lineType=cv2.LINE_AA)
# Image border
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w,
block_y + h), (255, 255, 255), thickness=3)
if fname is not None:
mosaic = cv2.resize(mosaic,
(int(ns * w * 0.5),
int(ns * h * 0.5)),
interpolation=cv2.INTER_AREA)
cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))
return mosaic
def random_affine(img, targets=(), degrees=10, translate=.1,
scale=.1, shear=10, border=0):
# targets = [cls, xyxy]
height = img.shape[0] + border * 2
width = img.shape[1] + border * 2
# Rotation and Scale
R = np.eye(3)
a = random.uniform(-degrees, degrees)
# a += random.choice([-180, -90, 0, 90])
# add 90deg rotations to small rotations
s = random.uniform(1 - scale, 1 + scale)
# s = 2 ** random.uniform(-scale, scale)
R[:2] = cv2.getRotationMatrix2D(angle=a,
center=(img.shape[1] / 2,
img.shape[0] / 2),
scale=s)
# Translation
T = np.eye(3)
T[0, 2] = (random.uniform(-translate, translate) *
img.shape[0] + border) # x translation (pixels)
T[1, 2] = (random.uniform(-translate, translate) *
img.shape[1] + border) # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan(random.uniform(-shear, shear) *
math.pi / 180) # x shear (deg)
S[1, 0] = math.tan(random.uniform(-shear, shear) *
math.pi / 180) # y shear (deg)
# Combined rotation matrix
M = S @ T @ R # ORDER IS IMPORTANT HERE!!
if (border != 0) or (M != np.eye(3)).any(): # image changed
img = cv2.warpAffine(img, M[:2], dsize=(width, height),
flags=cv2.INTER_LINEAR,
borderValue=(114, 114, 114))
# Transform label coordinates
n = len(targets)
if n:
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = (targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].
reshape(n * 4, 2))
# x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1),
y.max(1))).reshape(4, n).T
# reject warped points outside of image
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
w = xy[:, 2] - xy[:, 0]
h = xy[:, 3] - xy[:, 1]
area = w * h
area0 = ((targets[:, 3] - targets[:, 1]) *
(targets[:, 4] - targets[:, 2]))
ar = np.maximum(w / (h + 1e-16), h / (w + 1e-16))
# aspect ratio
i = (w > 4) & (h > 4) & (area / (area0 * s + 1e-16)
> 0.2) & (ar < 10)
targets = targets[i]
targets[:, 1:5] = xy[i]
return img, targets
def output_to_target(output, width, height):
"""
Convert a YOLO model output to target format
[batch_id, class_id, x, y, w, h, conf]
"""
if isinstance(output, torch.Tensor):
output = output.cpu().numpy()
targets = []
for i, o in enumerate(output):
if o is not None:
for pred in o:
box = pred[:4]
w = (box[2] - box[0]) / width
h = (box[3] - box[1]) / height
x = box[0] / width + w / 2
y = box[1] / height + h / 2
conf = pred[4]
cls = int(pred[5])
targets.append([i, cls, x, y, w, h, conf])
return np.array(targets)
def xyxy2xywh(x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where
# xy1=top-left, xy2=bottom-right
y = torch.zeros_like(x) if isinstance(
x, torch.Tensor) else np.zeros_like(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
return x
def check_file(file):
# Searches for file if not found locally
if os.path.isfile(file):
return file
else:
files = glob.glob('./**/' + file, recursive=True) # find file
assert len(files), 'File Not Found: %s' % file # assert file was found
return files[0] # return first file if multiple found
def load_classes(path):
# Loads *.names file at 'path'
with open(path, 'r') as f:
names = f.read().split('\n')
# filter removes empty strings (such as last line)
return list(filter(None, names))
def load_image(self, index):
# loads 1 image from dataset, returns img, original hw, resized hw
img = self.imgs[index]
if img is None: # not cached
path = self.img_files[index]
img = cv2.imread(path) # BGR
assert img is not None, 'Image Not Found ' + path
h0, w0 = img.shape[:2] # orig hw
r = self.img_size / max(h0, w0) # resize image to img_size
if r != 1:
# always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 and not self.augment \
else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
interpolation=interp)
return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
else:
# img, hw_original, hw_resized
return self.imgs[index], self.img_hw0[index], self.img_hw[index]
def load_mosaic(self, index):
# loads images in a mosaic
labels4 = []
s = self.img_size
xc, yc = [int(random.uniform(s * 0.5, s * 1.5))
for _ in range(2)] # mosaic center x, y
indices = [index] + [random.randint(0, len(self.labels) - 1)
for _ in range(3)] # 3 additional image indices
for i, index in enumerate(indices):
# Load image
img, _, (h, w) = load_image(self, index)
# place img in img4
if i == 0: # top left
img4 = np.full((s * 2, s * 2, img.shape[2]),
114, dtype=np.uint8)
# base image with 4 tiles
x1a, y1a, x2a, y2a = (max(xc - w, 0),
max(yc - h, 0), xc, yc)
# xmin, ymin, xmax, ymax (large image)
x1b, y1b, x2b, y2b = (w - (x2a - x1a), h -
(y2a - y1a), w, h)
# xmin, ymin, xmax, ymax (small image)
elif i == 1: # top right
x1a, y1a, x2a, y2a = (xc, max(yc - h, 0),
min(xc + w, s * 2), yc)
x1b, y1b, x2b, y2b = (0, h - (y2a - y1a),
min(w, x2a - x1a), h)
elif i == 2: # bottom left
x1a, y1a, x2a, y2a = (max(xc - w, 0), yc,
xc, min(s * 2, yc + h))
x1b, y1b, x2b, y2b = (w - (x2a - x1a), 0,
max(xc, w), min(y2a - y1a, h))
elif i == 3: # bottom right
x1a, y1a, x2a, y2a = xc, yc, min(xc + w,
s * 2), min(s * 2, yc + h)
x1b, y1b, x2b, y2b = (0, 0,
min(w, x2a - x1a), min(y2a - y1a, h))
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]
# img4[ymin:ymax, xmin:xmax]
padw = x1a - x1b
padh = y1a - y1b
# Labels
x = self.labels[index]
labels = x.copy()
if x.size > 0: # Normalized xywh to pixel xyxy format
labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
labels4.append(labels)
# Concat/clip labels
if len(labels4):
labels4 = np.concatenate(labels4, 0)
# np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:])
# use with center crop
np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:])
# use with random_affine
# Augment
# img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)]
# center crop (WARNING, requires box pruning)
img4, labels4 = random_affine(img4, labels4,
degrees=self.hyp['degrees'],
translate=self.hyp['translate'],
scale=self.hyp['scale'],
shear=self.hyp['shear'],
border=-s // 2) # border to remove
return img4, labels4
def compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Source: https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# Append sentinel values to beginning and end
mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
mpre = np.concatenate(([0.], precision, [0.]))
# Compute the precision envelope
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
# Integrate area under curve
method = 'interp' # methods: 'continuous', 'interp'
if method == 'interp':
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
else: # 'continuous'
# points where x axis (recall) changes
i = np.where(mrec[1:] != mrec[:-1])[0]
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
return ap
def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
r = (np.random.uniform(-1, 1, 3) *
[hgain, sgain, vgain] + 1) # random gains
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
dtype = img.dtype # uint8
x = np.arange(0, 256, dtype=np.int16)
lut_hue = ((x * r[0]) % 180).astype(dtype)
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
img_hsv = cv2.merge((cv2.LUT(hue, lut_hue),
cv2.LUT(sat, lut_sat),
cv2.LUT(val, lut_val))).astype(dtype)
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
# no return needed
class LoadImagesAndLabels(Dataset): # for training/testing
def __init__(
self,
path,
img_size=416,
batch_size=16,
augment=False,
hyp=None,
rect=False,
image_weights=False,
cache_images=False,
single_cls=False,
pad=0.0):
try:
path = str(Path(path)) # os-agnostic
parent = str(Path(path).parent) + os.sep
if os.path.isfile(path): # file
with open(path, 'r') as f:
f = f.read().splitlines()
# local to global path
f = [
x.replace(
'./',
parent) if x.startswith('./') else x for x in f]
elif os.path.isdir(path): # folder
f = glob.iglob(path + os.sep + '*.*')
else:
raise Exception('%s does not exist' % path)
self.img_files = [x.replace(
'/', os.sep) for x in f if
os.path.splitext(x)[-1].lower() in img_formats]
except BaseException:
raise Exception(
'Error loading data from %s. See %s' %
(path, help_url))
n = len(self.img_files)
assert n > 0, 'No images found in %s. See %s' % (path, help_url)
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
nb = bi[-1] + 1 # number of batches
self.n = n # number of images
self.batch = bi # batch index of image
self.img_size = img_size
self.augment = augment
self.hyp = hyp
self.image_weights = image_weights
self.rect = False if image_weights else rect
# load 4 images at a time into a mosaic (only during training)
self.mosaic = self.augment and not self.rect
# Define labels
self.label_files = [x.replace('images', 'labels').replace(
os.path.splitext(x)[-1], '.txt') for x in self.img_files]
# Read image shapes (wh)
sp = path.replace('.txt', '') + '.shapes' # shapefile path
try:
with open(sp, 'r') as f: # read existing shapefile
s = [x.split() for x in f.read().splitlines()]
assert len(s) == n, 'Shapefile out of sync'
except BaseException:
s = [exif_size(Image.open(f)) for f in tqdm(
self.img_files,
desc='Reading image shapes')]
np.savetxt(sp, s, fmt='%g') # overwrites existing (if any)
self.shapes = np.array(s, dtype=np.float64)
# Rectangular Training
# https://github.com/ultralytics/yolov3/issues/232
if self.rect:
# Sort by aspect ratio
s = self.shapes # wh
ar = s[:, 1] / s[:, 0] # aspect ratio
irect = ar.argsort()
self.img_files = [self.img_files[i] for i in irect]
self.label_files = [self.label_files[i] for i in irect]
self.shapes = s[irect] # wh
ar = ar[irect]
# Set training image shapes
shapes = [[1, 1]] * nb
for i in range(nb):
ari = ar[bi == i]
mini, maxi = ari.min(), ari.max()
if maxi < 1:
shapes[i] = [maxi, 1]
elif mini > 1:
shapes[i] = [1, 1 / mini]
self.batch_shapes = np.ceil(
np.array(shapes) * img_size / 32. + pad).astype(int) * 32
# Cache labels
self.imgs = [None] * n
self.labels = [np.zeros((0, 5), dtype=np.float32)] * n
create_datasubset, extract_bounding_boxes, labels_loaded = \
False, False, False
# number missing, found, empty, datasubset, duplicate
nm, nf, ne, ns, nd = 0, 0, 0, 0, 0
# saved labels in *.npy file
np_labels_path = str(Path(self.label_files[0]).parent) + '.npy'
if os.path.isfile(np_labels_path):
s = np_labels_path # print string
print(np_labels_path)
x = np.load(np_labels_path, allow_pickle=True)
if len(x) == n:
self.labels = x
labels_loaded = True
else:
s = path.replace('images', 'labels')
pbar = tqdm(self.label_files)
for i, file in enumerate(pbar):
if labels_loaded:
l = self.labels[i]
# np.savetxt(file, l, '%g') # save *.txt from *.npy file
else:
try:
with open(file, 'r') as f:
l = np.array(
[x.split() for x in f.read().splitlines()],
dtype=np.float32)
except BaseException:
# print('missing labels for image %s' % self.img_files[i])
# # file missing
nm += 1
continue
if l.shape[0]:
assert l.shape[1] == 5, '> 5 label columns: %s' % file
assert (l >= 0).all(), 'negative labels: %s' % file
assert (l[:, 1:] <= 1).all(
), 'non-normalized or out of bounds coordinate labels: %s' % file
if np.unique(
l, axis=0).shape[0] < l.shape[0]: # duplicate rows
# print('WARNING: duplicate rows in %s' %
# self.label_files[i]) # duplicate rows
nd += 1
if single_cls:
l[:, 0] = 0 # force dataset into single-class mode
self.labels[i] = l
nf += 1 # file found
# Create subdataset (a smaller dataset)
if create_datasubset and ns < 1E4:
if ns == 0:
create_folder(path='./datasubset')
os.makedirs('./datasubset/images')
exclude_classes = 43
if exclude_classes not in l[:, 0]:
ns += 1
# shutil.copy(src=self.img_files[i],
# dst='./datasubset/images/') # copy image
with open('./datasubset/images.txt', 'a') as f:
f.write(self.img_files[i] + '\n')
# Extract object detection boxes for a second stage classifier
if extract_bounding_boxes:
p = Path(self.img_files[i])
img = cv2.imread(str(p))
h, w = img.shape[:2]
for j, x in enumerate(l):
f = '%s%sclassifier%s%g_%g_%s' % (
p.parent.parent, os.sep, os.sep, x[0], j, p.name)
if not os.path.exists(Path(f).parent):
# make new output folder
os.makedirs(Path(f).parent)
b = x[1:] * [w, h, w, h] # box
b[2:] = b[2:].max() # rectangle to square
b[2:] = b[2:] * 1.3 + 30 # pad
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
# clip boxes outside of image
b[[0, 2]] = np.clip(b[[0, 2]], 0, w)
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
assert cv2.imwrite(
f, img[b[1]:b[3], b[0]:b[2]]), \
'Failure extracting classifier boxes'
else:
# print('empty labels for image %s' % self.img_files[i]) #
# file empty
ne += 1
# os.system("rm '%s' '%s'" % (self.img_files[i],
# self.label_files[i])) # remove
pbar.desc = 'Caching labels %s (%g found, %g missing, %g empty,\
%g duplicate, for %g images)' % (
s, nf, nm, ne, nd, n)
assert nf > 0 or n == 20288, 'No labels found in %s. See %s' % (
os.path.dirname(file) + os.sep, help_url)
if not labels_loaded and n > 1000:
print(
'Saving labels to %s for faster future loading' %
np_labels_path)
# np.save(np_labels_path, self.labels) # save for next time
# Cache images into memory for faster training (WARNING: large datasets
# may exceed system RAM)
if cache_images: # if training
gb = 0 # Gigabytes of cached images
pbar = tqdm(range(len(self.img_files)), desc='Caching images')
self.img_hw0, self.img_hw = [None] * n, [None] * n
for i in pbar: # max 10k images
self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(
self, i) # img, hw_original, hw_resized
gb += self.imgs[i].nbytes
pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
if self.image_weights:
index = self.indices[index]
hyp = self.hyp
if self.mosaic:
# Load mosaic
img, labels = load_mosaic(self, index)
shapes = None
else:
# Load image
img, (h0, w0), (h, w) = load_image(self, index)
# Letterbox
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# Load labels
labels = []
x = self.labels[index]
if x.size > 0:
# Normalized xywh to pixel xyxy format
labels = x.copy()
labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
if self.augment:
# Augment imagespace
if not self.mosaic:
img, labels = random_affine(img, labels,
degrees=hyp['degrees'],
translate=hyp['translate'],
scale=hyp['scale'],
shear=hyp['shear'])
# Augment colorspace
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
# Apply cutouts
# if random.random() < 0.9:
# labels = cutout(img, labels)
nL = len(labels) # number of labels
if nL:
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
if self.augment:
# random left-right flip
lr_flip = True
if lr_flip and random.random() < 0.5:
img = np.fliplr(img)
if nL:
labels[:, 1] = 1 - labels[:, 1]
# random up-down flip
ud_flip = False
if ud_flip and random.random() < 0.5:
img = np.flipud(img)
if nL:
labels[:, 2] = 1 - labels[:, 2]
labels_out = torch.zeros((nL, 6))
if nL:
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return torch.from_numpy(img), labels_out, self.img_files[index], shapes
@staticmethod
def collate_fn(batch):
img, label, path, shapes = zip(*batch) # transposed
for i, l in enumerate(label):
l[:, 0] = i # add target image index for build_targets()
return torch.stack(img, 0), torch.cat(label, 0), path, shapes
def parse_data_cfg(path):
# Parses the data configuration file
if not os.path.exists(path) and os.path.exists(
'data' + os.sep + path): # add data/ prefix if omitted
path = 'data' + os.sep + path
with open(path, 'r') as f:
lines = f.readlines()
options = dict()
for line in lines:
line = line.strip()
if line == '' or line.startswith('#'):
continue
key, val = line.split('=')
options[key.strip()] = val.strip()
return options
def create_grids(ng=(13, 13), device='cpu'):
nx, ny = ng # x and y grid size
ng = torch.tensor(ng, dtype=torch.float)
# build xy offsets
yv, xv = torch.meshgrid(
[torch.arange(ny, device=device), torch.arange(nx, device=device)])
grid = torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
return grid
def post_process(x):
stride = [32, 16, 8]
anchors = [[10, 13, 16, 30, 33, 23],
[30, 61, 62, 45, 59, 119],
[116, 90, 156, 198, 373, 326]]
temp = [13, 26, 52]
res = []
for i in range(3):
out = torch.from_numpy(x[i]) if not torch.is_tensor(x[i]) else x[i]
bs, _, ny, nx = out.shape # bs, 255, 13, 13
anchor = torch.Tensor(anchors[2 - i]).reshape(3, 2)
anchor_vec = anchor / stride[i]
anchor_wh = anchor_vec.view(1, 3, 1, 1, 2)
grid = create_grids((nx, ny))
# p.view(bs, 255, 13, 13) -- > (bs, 3, 13, 13, 85) # (bs, anchors,
# grid, grid, classes + xywh)
out = out.view(
bs, 3, 85, temp[i], temp[i]).permute(
0, 1, 3, 4, 2).contiguous() # prediction
io = out.clone() # inference output
io[..., :2] = torch.sigmoid(io[..., :2]) + grid # xy
io[..., 2:4] = torch.exp(io[..., 2:4]) * anchor_wh # wh yolo method
io[..., :4] *= stride[i]
torch.sigmoid_(io[..., 4:])
res.append(io.view(bs, -1, 85))
return torch.cat(res, 1), x
def test(data,
batch_size=32,
imgsz=416,
conf_thres=0.001,
iou_thres=0.6, # for nms
save_json=False,
single_cls=False,
augment=False,
model=None,
dataloader=None,
multi_label=True,
names='data/coco.names',
onnx_runtime=True,
onnx_weights="yolov3-8",
ipu=False,
provider_config='vaip_config.json'):
"""
COCO average precision (AP) Evaluation. Iterate inference on the test dataset
and the results are evaluated by COCO API.
"""
device = torch.device('cpu')
verbose = False
if isinstance(onnx_weights, list):
onnx_weights = onnx_weights[0]
if ipu:
providers = ["VitisAIExecutionProvider"]
provider_options = [{"config_file": provider_config}]
else:
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
provider_options = None
onnx_model = onnxruntime.InferenceSession(
onnx_weights,
providers=providers,
provider_options=provider_options)
# Configure run
data = parse_data_cfg(data)
nc = 1 if single_cls else int(data['classes']) # number of classes
path = data['valid'] # path to test images
names = load_classes(data['names']) # class names
iouv = torch.linspace(0.5, 0.95, 10).to(
device) # iou vector for [email protected]:0.95
iouv = iouv[0].view(1) # comment for [email protected]:0.95
niou = iouv.numel()
# Dataloader
if dataloader is None:
dataset = LoadImagesAndLabels(
path,
imgsz,
batch_size,
rect=False,
single_cls=opt.single_cls,
pad=0.5)
batch_size = min(batch_size, len(dataset))
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(),
batch_size if
batch_size > 1 else 0,
8]),
pin_memory=True,
collate_fn=dataset.collate_fn)
seen = 0
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
'[email protected]', 'F1')
p, r, f1, mp, mr, map, mf1, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(
tqdm(dataloader, desc=s)):
# uint8 to float32, 0 - 255 to 0.0 - 1.0
imgs = imgs.to(device).float() / 255.0
targets = targets.to(device)
nb, _, height, width = imgs.shape
# batch size, channels, height, width
whwh = torch.Tensor([width, height, width, height]).to(device)
if onnx_runtime:
# outputs = onnx_model.run(
# None, {onnx_model.get_inputs()[0].name: imgs.cpu().numpy()})
outputs = onnx_model.run(
None, {onnx_model.get_inputs()[0].name: np.transpose(imgs.cpu().numpy(), (0, 2, 3, 1))})
outputs = [np.transpose(out, (0, 3, 1, 2)) for out in outputs]
outputs = [torch.tensor(item).to(device) for item in outputs]
inf_out, train_out = post_process(outputs)
else:
# Disable gradients
with torch.no_grad():
# Run model
t = time_synchronized()
# inference and training outputs
inf_out, train_out = model(imgs, augment=augment)
t0 += time_synchronized() - t
# Compute loss
# if is_training: # if model has loss hyperparameters
# loss += compute_loss(train_out, targets, model)[1][:3] # GIoU,
# obj, cls
# Run NMS
t = time_synchronized()
output = non_max_suppression(
inf_out,
conf_thres=conf_thres,
iou_thres=iou_thres,
multi_label=multi_label)
t1 += time_synchronized() - t
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append(
(torch.zeros(
0,
niou,
dtype=torch.bool),
torch.Tensor(),
torch.Tensor(),
tcls))
continue
# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
# Clip boxes to image bounds
clip_coords(pred, (height, width))
# Append to pycocotools JSON dictionary
if save_json:
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si]
[0], shapes[si][1]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
correct = torch.zeros(
pred.shape[0],
niou,
dtype=torch.bool,
device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5]) * whwh
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(
).view(-1) # target indices
pi = (cls == pred[:, 5]).nonzero(
).view(-1) # prediction indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(pred[pi, :4], tbox[ti].cpu()).max(
1) # best ious, indices
# Append detections
for j in (ious > iouv[0].cpu()).nonzero():
d = ti[i[j]] # detected target
if d not in detected:
detected.append(d)
# iou_thres is 1xn
correct[pi[j]] = ious[j] > iouv.cpu()
if len(
detected) == nl:
# all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append(
(correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images
if batch_i < 1:
f = 'test_batch%g_gt.jpg' % batch_i # filename
plot_images(imgs, targets, paths=paths, names=names,
fname=f) # ground truth
f = 'test_batch%g_pred.jpg' % batch_i
plot_images(imgs, output_to_target(output, width, height),
paths=paths, names=names, fname=f) # predictions
# test end
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
if niou > 1:
p, r, ap, f1 = p[:, 0], r[:, 0], ap.mean(
1), ap[:, 0] # [P, R, [email protected]:0.95, [email protected]]
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
nt = np.bincount(stats[3].astype(np.int64),
minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%10.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
# Print speeds
if verbose or save_json:
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + \
(imgsz, imgsz, batch_size) # tuple
print(
'Speed: %.1f/%.1f/%.1f ms \
inference/NMS/total per %gx%g image at batch-size %g' % t)
# Save JSON
if save_json and map and len(jdict):
print('\nCOCO mAP with pycocotools...')
imgIds = [int(Path(x).stem.split('_')[-1])
for x in dataloader.dataset.img_files]
with open('results.json', 'w') as file:
json.dump(jdict, file)
try:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
# initialize COCO ground truth api
cocoGt = COCO(
glob.glob('coco/annotations/instances_val*.json')[0])
cocoDt = cocoGt.loadRes('results.json') # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
# [:32] # only evaluate these images
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# mf1, map = cocoEval.stats[:2] # update to pycocotools results
# ([email protected]:0.95, [email protected])
except BaseException:
print(
'WARNING: pycocotools must be installed with \
numpy==1.17 to run correctly. '
'See https://github.com/cocodataset/cocoapi/issues/356')
# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map, mf1, *(loss.cpu() / len(dataloader)).tolist()), maps
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='Test onnx model performance on COCO dataset')
parser.add_argument(
'--data',
type=str,
default='coco2017.data',
help='Path of *.data')
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='Size of each image batch')
parser.add_argument(
'--img-size',
type=int,
default=416,
help='Inference size (pixels)')
parser.add_argument(
'--conf-thres',
type=float,
default=0.001,
help='Object confidence threshold')
parser.add_argument(
'--iou-thres',
type=float,
default=0.5,
help='IOU threshold for NMS')
parser.add_argument(
'--save-json',
action='store_true',
help='Save a COCOapi-compatible JSON results file')
parser.add_argument(
'--device',
default='',
help='Device id (i.e. 0 or 0,1) or cpu')
parser.add_argument(
'--augment',
action='store_true',
help='Augmented inference')
parser.add_argument('--sync_bn', action='store_true')
parser.add_argument('--print_model', action='store_true')
parser.add_argument('--test_rect', action='store_true')
parser.add_argument(
'--onnx_runtime',
action='store_true',
help='Use onnx runtime')
parser.add_argument(
'--onnx_weights',
default='yolov3-8.onnx',
nargs='+',
type=str,
help='Path of onnx weights')
parser.add_argument(
'--single-cls',
action='store_true',
help='Run as single-class dataset')
parser.add_argument(
"--ipu",
action="store_true",
help="Use IPU for inference")
parser.add_argument(
"--provider_config",
type=str,
default="vaip_config.json",
help="Path of the config file for seting provider_options")
opt = parser.parse_args()
opt.save_json = opt.save_json or any(
[x in opt.data for x in ['coco.data',
'coco2014.data', 'coco2017.data']])
opt.data = check_file(opt.data) # check file
print(opt)
help_url = 'https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data'
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv',
'.mkv']
test(opt.data,
opt.batch_size,
opt.img_size,
opt.conf_thres,
opt.iou_thres,
opt.save_json,
opt.single_cls,
opt.augment,
names='data/coco.names',
onnx_weights=opt.onnx_weights,
ipu=opt.ipu,
provider_config=opt.provider_config
)