import os import sys import pathlib CURRENT_DIR = pathlib.Path(__file__).parent sys.path.append(str(CURRENT_DIR)) import numpy as np from tqdm import tqdm import torch import torch.nn as nn from torch.utils import data import torchvision.transforms as transform import torch.nn.functional as F import onnxruntime from PIL import Image import argparse import datasets.utils as utils class Configs(): def __init__(self): parser = argparse.ArgumentParser(description='PyTorch SemanticFPN model') # dataset parser.add_argument('--dataset', type=str, default='citys', help='dataset name (default: citys)') parser.add_argument('--onnx_path', type=str, default='FPN_int_NHWC.onnx', help='onnx path') parser.add_argument('--num-classes', type=int, default=19, help='the classes numbers (default: 19 for cityscapes)') parser.add_argument('--test-folder', type=str, default='./data/cityscapes', help='test dataset folder (default: ./data/cityscapes)') parser.add_argument('--base-size', type=int, default=1024, help='the shortest image size') parser.add_argument('--crop-size', type=int, default=256, help='input size for inference') parser.add_argument('--batch-size', type=int, default=1, metavar='N', help='input batch size for testing (default: 10)') # ipu setting parser.add_argument('--ipu', action='store_true', help='use ipu') parser.add_argument('--provider_config', type=str, default=None, help='provider config path') self.parser = parser def parse(self): args = self.parser.parse_args() print(args) return args def build_data(args, subset_len=None, sample_method='random'): from datasets import get_segmentation_dataset input_transform = transform.Compose([ transform.ToTensor(), transform.Normalize([.485, .456, .406], [.229, .224, .225])]) data_kwargs = {'transform': input_transform, 'base_size': args.base_size, 'crop_size': args.crop_size} testset = get_segmentation_dataset(args.dataset, split='val', mode='testval', root=args.test_folder, **data_kwargs) if subset_len: assert subset_len <= len(testset) if sample_method == 'random': testset = torch.utils.data.Subset(testset, random.sample(range(0, len(test_data)), subset_len)) else: testset = torch.utils.data.Subset(testset, list(range(subset_len))) # dataloader test_data = data.DataLoader(testset, batch_size=args.batch_size, drop_last=False, shuffle=False) return test_data def eval_miou(data,path="FPN_int.onnx", device='cpu'): confmat = utils.ConfusionMatrix(args.num_classes) tbar = tqdm(data, desc='\r') if args.ipu: providers = ["VitisAIExecutionProvider"] provider_options = [{"config_file": args.provider_config}] else: providers = ['CPUExecutionProvider'] provider_options = None session = onnxruntime.InferenceSession(path, providers=providers, provider_options=provider_options) for i, (image, target) in enumerate(tbar): image, target = image.to(device), target.to(device) ort_input = {session.get_inputs()[0].name: image.cpu().numpy().transpose(0,2,3,1)} ort_output = session.run(None, ort_input)[0].transpose(0,3,1,2) if isinstance(ort_output, (tuple, list)): ort_output = ort_output[0] ort_output = torch.from_numpy(ort_output).to(device) if ort_output.size()[2:] != target.size()[1:]: ort_output = F.interpolate(ort_output, size=target.size()[1:], mode='bilinear', align_corners=True) confmat.update(target.flatten(), ort_output.argmax(1).flatten()) confmat.reduce_from_all_processes() print('Evaluation Metric: ') print(confmat) def main(args): print('===> Evaluation mIoU: ') test_data = build_data(args) eval_miou(test_data, args.onnx_path) if __name__ == "__main__": args = Configs().parse() main(args)