File size: 12,479 Bytes
8ade218
 
9416971
8ade218
9416971
 
 
66d630e
9416971
 
66d630e
2ae0e2b
66d630e
 
9416971
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
license: apache-2.0
inference: false
---

# MistralLite Model

MistralLite is a fine-tuned [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) language model, with enhanced capblities of processing long context (up to 32K tokens). By utilizing an adapted Rotary Embedding and sliding window during fine-tuning, MistralLight is able to **perform signficantly better on several long context retrieve and answering tasks**, while keeping the simple model structure of the original model. MistralLite is useful for applications such as long context line and topic retrieval, summarization, question-answering, and etc. MistralLite can be deployed on a single AWS `g5.2x` instance with Sagemaker [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) endpoint, making it suitable for applications that require high performance in resource-constrained environments. You can also serve the MistralLite model directly using TGI docker containers. Also, MistralLite supports other ways of serving like [vLLM](https://github.com/vllm-project/vllm), and you can use MistralLite in Python by using the [HuggingFace transformers](https://huggingface.co/docs/transformers/index) and [FlashAttention-2](https://github.com/Dao-AILab/flash-attention) library.

MistralLight evolves from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), and their similarities and differences are summarized below:
|Model|Fine-tuned on long contexts| Max context length| RotaryEmbedding adaptation| Sliding Window Size|
|----------|-------------:|------------:|-----------:|-----------:|
| Mistral-7B-v0.1 | No | 32K | rope_theta = 10000 | 4096 |
| MistralLite | Yes | 32K | **rope_theta = 1000000** | **16384** |

## Motivation of Developing MistralLite

Since the release of [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the model became increasingly popular because its strong performance on a wide range of benchmarks. But most of the benchmarks are evaluated on `short context`, and not much has been investigated on its performance on long context tasks. Then We evaluated `Mistral-7B-Instruct-v0.1` against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer context. Although the performance of the models on long context was fairly competitive on long context less than 4096 tokens, there were some discrepencies on its performance on longer context. Motivated by improving its performance on longer context, we finetuned the Mistral 7B model, and got `Mistrallite`. The model managed to `signifantly boost the performance of long context handling` over Mistral-7B-Instruct-v0.1. The detailed `long context evalutaion results` are as below: 

### [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) ###
|Model Name|Input length| Input length | Input length| Input length| Input length|
|----------|-------------:|-------------:|------------:|-----------:|-----------:|
|          | 2851| 5568 |8313 | 11044 | 13780 
|   Mistral-7B-Instruct-v0.1  | 90%        | 0%       | 0%      | 0%     | 0% |
|   MistralLite   | **100%**        | **100%**       | **100%**      | **100%**     | **98%** |

### [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) ###

|Model Name|Input length| Input length | Input length| Input length| Input length|Input length|
|----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
|          | 3818| 5661 |7505 | 9354 | 11188 | 12657 
|   Mistral-7B-Instruct-v0.1   | **98%**        | 62%       | 42%      | 42%     | 32% | 30% |
|   MistralLite   | **98%**        | **92%**       | **88%**      | **76%**     | **70%** | **60%** |

### [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101) ###

|Model Name|Input length| Input length | Input length| Input length|
|----------|-------------:|-------------:|------------:|-----------:|
|          | 3264| 5396 |8329 | 10197 | 
|   Mistral-7B-Instruct-v0.1   | **100%**        | 50%       | 20%      | 30%   |
|   MistralLite  | **100%**        | **100%**       | **100%**      | **100%**   |

### [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/) ###
|Model Name| Test set Accuracy | Hard subset Accuracy|
|----------|-------------:|-------------:|
| Mistral-7B-Instruct-v0.1 | 44.3% | 39.7% |
| MistralLite | **64.4%** | **56.2%** |


## Model Details

- **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac)
- **Model type:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Language:** English
- **Finetuned from weights:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- **Finetuned on data:**
  - [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled)
  - [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions)
  - [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- **Supported Serving Framework:**
  - [Text-Generation-Inference 1.1.0](https://github.com/huggingface/text-generation-inference/tree/v1.1.0)
  - [vLLM](https://github.com/vllm-project/vllm)
  - [HuggingFace transformers](https://huggingface.co/docs/transformers/index)
  - [HuggingFace Text Generation Inference (TGI) container on SageMaker](https://github.com/awslabs/llm-hosting-container)
- **Model License:** Apache 2.0
- **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)

## How to Use MistralFlite from Python Code ##
### Install the necessary packages

Requires: [transformers](https://pypi.org/project/transformers/) 4.34.0 or later, and [flash-attn](https://pypi.org/project/flash-attn/) 2.3.1.post1 or later.

```shell
pip install transformers==4.34.0
pip install flash-attn==2.3.1.post1 --no-build-isolation
```
### You can then try the following example code

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import torch

model_id = "amazon/MistralLite"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             torch_dtype=torch.bfloat16,
                                             use_flash_attention_2=True,
                                             device_map="auto",)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"

sequences = pipeline(
    prompt,
    max_new_tokens=200,
    do_sample=False,
    return_full_text=False,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
    print(f"{seq['generated_text']}")
```
**Important** - Use the prompt template below for MistralLite:
```
<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>
```

## How to Deploy MistralFlite on Amazon SageMaker ##
### Install the necessary packages

Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.

```shell
pip install sagemaker==2.192.1
```

### Deploy the Model as A SageMaker Endpoint ###
To deploy MistralLite on a SageMaker endpoint, please follow the example code as below.
```python
import sagemaker
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
import time

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
role = sagemaker.get_execution_role()

image_uri = get_huggingface_llm_image_uri(
  backend="huggingface", # or lmi
  region=region,
 version="1.1.0"
)

model_name = "MistralLite-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())

hub = {
    'HF_MODEL_ID':'amazon/MistralLite',
    'HF_TASK':'text-generation',
    'SM_NUM_GPUS':'1',
    'HF_MODEL_QUANTIZE':'true'
}

model = HuggingFaceModel(
    name=model_name,
    env=hub,
    role=role,
    image_uri=image_uri
)
predictor = model.deploy(
  initial_instance_count=1,
  instance_type="ml.g5.2xlarge",
  endpoint_name=model_name
)
```

### Perform Inference ###
To call the endpoint, please follow the example code as below:

```python
input_data = {
  "inputs": "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
  "parameters": {
    "do_sample": False,
    "max_new_tokens": 100,
  }
}
predictor.predict(input_data)
```
or via [boto3](https://pypi.org/project/boto3/), and the example code is shown as below:

```python
import boto3
import json
def call_endpoint(client, prompt, endpoint_name, paramters):
    client = boto3.client("sagemaker-runtime")
    payload = {"inputs": prompt,
               "parameters": parameters}
    response = client.invoke_endpoint(EndpointName=endpoint_name,
                                      Body=json.dumps(payload), 
                                      ContentType="application/json")
    output = json.loads(response["Body"].read().decode())
    result = output[0]["generated_text"]
    return result

client = boto3.client("sagemaker-runtime")
parameters = {
        "max_new_tokens": 250,
        "do_sample": True,
        "temperature": None,
        "use_cache": True,
        "seed": 1,
}
endpoint_name = "your-endpoint-name-here""
prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"
result = call_endpoint(client, prompt, endpoint_name, paramters)
print(result)
```

## How to Serve MistralFlite on TGI ##

### Start TGI server ###
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`

Example Docker parameters:

```shell
--model-id amazon/MistralLite --port 3000 --max-input-length 8192 --max-total-tokens 16384 --max-batch-prefill-tokens 16384
```

### Perform Inference ###
Example Python code for inference with TGI (requires huggingface-hub 0.17.0 or later):

```shell
pip3 install huggingface-hub==0.17.0
```

```python
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>"

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=100,
                                  do_sample=False,
                                  temperature=None,
                                  )

print(f"Model output: {response}")
```

**Important** - When using MistralLite for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.

## How to Serve MistralFlite on vLLM ##
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).

### Using vLLM as a server ###
When using vLLM as a server, pass the --model amazon/MistralLite parameter, for example:
```shell
python3 python -m vllm.entrypoints.api_server --model amazon/MistralLite
```

### Using vLLM in Python Code ###
When using vLLM from Python code, Please see the example code as below:

```python
from vllm import LLM, SamplingParams

prompts = [
   "<|prompter|>What are the main challenges to support a long context for LLM?</s><|assistant|>",
]
sampling_params = SamplingParams(temperature=0, max_tokens=100)

llm = LLM(model="amazon/MistralLite",)

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

## Limitations ##
Before using the MistralLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.