alvarobartt HF staff commited on
Commit
15d745b
1 Parent(s): 14201e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md CHANGED
@@ -1,3 +1,76 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ datasets:
6
+ - openbmb/UltraFeedback
7
+ model_creator: OpenBMB
8
+ model_name: UltraCM-13b
9
+ model_type: llama
10
+ base_model: openbmb/UltraCM-13b
11
+ library_name: transformers
12
+ pipeline_tag: text-generation
13
+ inference: false
14
+ tags:
15
+ - dpo
16
+ - rlaif
17
+ - preference
18
+ - ultrafeedback
19
+ quantized_by: alvarobartt
20
  ---
21
+
22
+ ## Model Card for UltraCM-13b-GGUF
23
+
24
+ [UltraCM-13B](https://huggingface.co/openbmb/UltraCM-13b) is a fine-tuned LLM for completion-critique in order to evaluate
25
+ LLM outputs on helpfulness, truthfulness, honesty, and to what extent the answer follows the given instructions.
26
+
27
+ UltraCM-13B is a 13b param LLM that was released by [OpenBMB](https://huggingface.co/openbmb), as part of their paper
28
+ [UltraFeedback: Boosting Language Models with High-quality Feedback](https://arxiv.org/abs/2310.01377).
29
+
30
+ This model contains the quantized variants using the GGUF format, introduced by the [llama.cpp](https://github.com/ggerganov/llama.cpp) team.
31
+
32
+ ### Model Details
33
+
34
+ #### Model Description
35
+
36
+ - **Model type:** Llama
37
+ - **Fine-tuned from model:** [Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
38
+ - **Created by**: [Meta AI](https://huggingface.co/meta-llama)
39
+ - **Fine-tuned by:** [OpenBMB](https://huggingface.co/openbmb)
40
+ - **Quantized by:** [alvarobartt](https://huggingface.co/alvarobartt)
41
+ - **Language(s) (NLP):** English
42
+ - **License:** Apache 2.0
43
+
44
+ ### Model Files
45
+
46
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
47
+ | ---- | ---- | ---- | ---- | ---- | ----- |
48
+ | [UltraCM-13b.q4_k_s.gguf](https://huggingface.co/alvarobartt/UltraCM-13b-GGUF/blob/main/UltraCM-13b.q4_k_s.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
49
+ | [UltraCM-13b.q4_k_m.gguf](https://huggingface.co/alvarobartt/UltraCM-13b.GGUF/blob/main/UltraCM-13b.q4_k_m.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
50
+ | [UltraCM-13b.q5_k_s.gguf](https://huggingface.co/alvarobartt/UltraCM-13b.GGUF/blob/main/UltraCM-13b.q5_k_s.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
51
+ | [UltraCM-13b.q5_k_m.gguf](https://huggingface.co/alvarobartt/UltraCM-13b.GGUF/blob/main/UltraCM-13b.q5_k_m.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
52
+
53
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
54
+
55
+ ### Uses
56
+
57
+ #### Direct Use
58
+
59
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Citation
64
+
65
+ Since this is only a GGUF-quantization of the original weights, please refer and cite the original authors instead.
66
+
67
+ ```bibtex
68
+ @misc{cui2023ultrafeedback,
69
+ title={UltraFeedback: Boosting Language Models with High-quality Feedback},
70
+ author={Ganqu Cui and Lifan Yuan and Ning Ding and Guanming Yao and Wei Zhu and Yuan Ni and Guotong Xie and Zhiyuan Liu and Maosong Sun},
71
+ year={2023},
72
+ eprint={2310.01377},
73
+ archivePrefix={arXiv},
74
+ primaryClass={cs.CL}
75
+ }
76
+ ```