Text Classification
Transformers
Safetensors
English
llama
text-generation-inference
Inference Endpoints
hamishivi commited on
Commit
e75c83a
1 Parent(s): 597e7b0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: llama-3-tulu-2-70b-uf-mean-rm
4
+ results: []
5
+ datasets:
6
+ - allenai/tulu-2.5-preference-data
7
+ - allenai/tulu-v2-sft-mixture
8
+ language:
9
+ - en
10
+ base_model: allenai/llama-3-tulu-2-70b
11
+ license: apache-2.0
12
+ ---
13
+ <center>
14
+ <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-2.5/tulu_25_banner.png" alt="Tulu 2.5 banner image" width="800px"/>
15
+ </center>
16
+
17
+ # Model Card for Llama 3 Tulu V2 70B RM - UltraFeedback
18
+
19
+ Tulu is a series of language models that are trained to act as helpful assistants.
20
+ This is a 70B reward model used for PPO training trained on the UltraFeedback dataset.
21
+
22
+ For more details, read the paper:
23
+ [Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback](https://arxiv.org/abs/2406.09279).
24
+
25
+
26
+ ## .Model description
27
+
28
+ - **Model type:** A reward model trained on UltraFeedback, designed to be used in RLHF training.
29
+ - **Language(s) (NLP):** English
30
+ - **License:** Apache 2.0.
31
+ - **Finetuned from model:** [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B)
32
+
33
+ ### Model Sources
34
+
35
+ - **Repository:** https://github.com/allenai/open-instruct
36
+ - **Dataset:** Data used to train this model can be found [here](https://huggingface.co/datasets/allenai/tulu-2.5-preference-data) - specifically the `ultrafeedback_mean_aspects` split.
37
+
38
+
39
+ ## Input Format
40
+
41
+ The model is trained to use the following format (note the newlines):
42
+ ```
43
+ <|user|>
44
+ Your message here!
45
+ <|assistant|>
46
+ ```
47
+
48
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
49
+ We have included a [chat template](https://huggingface.co/docs/transformers/main/en/chat_templating) in the tokenizer implementing this template.
50
+
51
+ ## Intended uses & limitations
52
+
53
+ The model was initially fine-tuned on a filtered and preprocessed of the [Tulu V2 mix dataset](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), which contains a diverse range of human created instructions and synthetic dialogues generated primarily by other LLMs.
54
+ We then further trained the model with a [Jax RM trainer](https://github.com/hamishivi/EasyLM/blob/main/EasyLM/models/llama/llama_train_rm.py) built on [EasyLM](https://github.com/young-geng/EasyLM) on the dataset mentioned above.
55
+ This model is meant as a research artefact.
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during PPO training:
60
+ - learning_rate: 1e-06
61
+ - total_train_batch_size: 512
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear cooldown to 1e-05.
64
+ - lr_scheduler_warmup_ratio: 0.03
65
+ - num_epochs: 1.0
66
+
67
+ ## Citation
68
+
69
+ If you find Tulu 2.5 is useful in your work, please cite it with:
70
+
71
+ ```
72
+ @misc{ivison2024unpacking,
73
+ title={{Unpacking DPO and PPO: Disentangling Best Practices for Learning from Preference Feedback}},
74
+ author={{Hamish Ivison and Yizhong Wang and Jiacheng Liu and Ellen Wu and Valentina Pyatkin and Nathan Lambert and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi}}
75
+ year={2024},
76
+ eprint={2406.09279},
77
+ archivePrefix={arXiv},
78
+ primaryClass={cs.CL}
79
+ }
80
+ ```