import abc import dataclasses import functools import os from os import environ from typing import Mapping, Optional, Sequence, List from absl import logging import clu import gin from pathlib import Path import seqio from seqio import utils from seqio.feature_converters import _check_exact_match, _check_lengths import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops.image_ops_impl import _ImageDimensions, _CheckAtLeast3DImage, _assert, _is_tensor from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from transformers import PreTrainedTokenizerFast from . import seqio_tokenizer as vocab from .constants import * from .utils import pop_metadata from .util import is_url DEFAULT_EXTRA_IDS = 0 OutputFeaturesType = Mapping[str, utils.Feature] def build_tokenizer( tokenizer_type, has_extra_token=True, adds_space=False, olmo_bos_token_id=1, olmo_eos_token_id=2, tokenizer_dir="gs://mm-olmo/tokenizer", pad_tokenizer_to=None, cache={}, ): cache_key = (tokenizer_type, has_extra_token, adds_space, olmo_bos_token_id, olmo_eos_token_id, pad_tokenizer_to) if cache_key in cache: return cache[cache_key] if tokenizer_type == 'llama': tok = vocab.SentencePieceVocabulary( os.path.join(tokenizer_dir, "llama_tokenizer.model"), extra_ids=DEFAULT_EXTRA_IDS, reverse_extra_ids=True, extra_tokens=EXTRA_TOKENS if has_extra_token else None, ) elif tokenizer_type == 'yi': tok = vocab.SentencePieceVocabulary( os.path.join(tokenizer_dir, "yi_tokenizer.model"), extra_ids=DEFAULT_EXTRA_IDS, reverse_extra_ids=True, extra_tokens=EXTRA_TOKENS if has_extra_token else None, ) elif tokenizer_type == 'mistral': tok = vocab.SentencePieceVocabulary( os.path.join(tokenizer_dir, "mistral_tokenizer.model"), extra_ids=DEFAULT_EXTRA_IDS, reverse_extra_ids=True, extra_tokens=EXTRA_TOKENS if has_extra_token else None, ) elif tokenizer_type == "mistral0.3": tok = vocab.SentencePieceVocabulary( os.path.join(tokenizer_dir, "mistral0.3_tokenizer.model.v3"), extra_ids=DEFAULT_EXTRA_IDS, reverse_extra_ids=True, extra_tokens=EXTRA_TOKENS if has_extra_token else None, ) elif tokenizer_type == 'gemma': tok = vocab.SentencePieceVocabulary( os.path.join(tokenizer_dir, "gemma_tokenizer.model"), extra_ids=DEFAULT_EXTRA_IDS, reverse_extra_ids=True, extra_tokens=EXTRA_TOKENS if has_extra_token else None, ) elif tokenizer_type.startswith("hf-"): # FIXME When using the beaker image "sanghol/mm-olmo" for hosting endpoints, # we should set the cache_dir, otherwise FileNotFound errors will be raised cache_dir = None if tokenizer_dir is None or is_url(tokenizer_dir) else tokenizer_dir from transformers import AutoTokenizer extra_tokens = list(EXTRA_TOKENS) if pad_tokenizer_to is not None: tokenizer = AutoTokenizer.from_pretrained(tokenizer_type[3:], token=environ.get("HF_ACCESS_TOKEN"), cache_dir=cache_dir) n_extra_tokens = pad_tokenizer_to - len(tokenizer) # This handles a case where the LLM embedding matrix is larger than the vocab size # We need the extra tokens in `EXTRA_TOKENS` to be assigned id's higher than the embedding # matrix size, not the vocab size, since we will concat the embedding and matrix with # the special token embedding matrix, so we pad the vocab with additional special tokens if n_extra_tokens > 0: logging.info(f"Padding tokenizer with {n_extra_tokens} tokens") extra_tokens = [f"||" for i in range(n_extra_tokens)] + extra_tokens bos_token_id = None tokenizer = AutoTokenizer.from_pretrained( tokenizer_type[3:], additional_special_tokens=extra_tokens, token=environ.get("HF_ACCESS_TOKEN"), cache_dir=cache_dir, ) if ("qwen2" in tokenizer_type.lower()) or ("olmo" in tokenizer_type.lower()): # These tokenizers do not have a BOS, and instead use EOS as a generic seperator token. # In this case we will use EOS as BOS assert tokenizer.bos_token_id is None bos_token_id = tokenizer.eos_token_id if pad_tokenizer_to is not None: for ix, tok in enumerate(EXTRA_TOKENS): ids = tokenizer.encode(tok, add_special_tokens=False) assert ids == [pad_tokenizer_to + ix] tok = vocab.HfTokenizerWrapper(tokenizer, bos_token_id=bos_token_id, adds_space=adds_space) elif tokenizer_type.startswith("olmo-"): from olmo.tokenizer import Tokenizer assert Path(tokenizer_type[5:]).is_file() tokenizer = Tokenizer.from_file( tokenizer_type[5:], eos_token_id=olmo_eos_token_id, pad_token_id=-1, ) tok = vocab.OLMoTokenizerWrapper(tokenizer, bos_token_id=olmo_bos_token_id, adds_space=adds_space) else: raise NotImplementedError(tokenizer_type) cache[cache_key] = tok return tok def get_special_token_ids(tokenizer): if isinstance(tokenizer, (vocab.HfTokenizerWrapper, vocab.OLMoTokenizerWrapper)): ids = tokenizer.encode("".join(EXTRA_TOKENS)) if len(ids) == len(EXTRA_TOKENS) + 1: ids = ids[1:] elif ("gemma_tokenizer" in tokenizer._sentencepiece_model_file or "yi_tokenizer" in tokenizer._sentencepiece_model_file ): # Not sure why ATM, but the LLaMa tokenizer will add an extra space token # if this string starts with a space, while the gemma one needs the leading space ids = tokenizer.encode(" " + " ".join(EXTRA_TOKENS)) else: ids = tokenizer.encode(" ".join(EXTRA_TOKENS)) assert len(ids) == len(EXTRA_TOKENS) return {k: i for k, i in zip(EXTRA_TOKENS, ids)} def _append_to_innermost_axis( tensor: tf.Tensor, scalar: tf.Tensor, ) -> tf.Tensor: """Appends `scalar` to each slice in the innermost axis of `tensor`. >>> _append_to_innermost_axis([1, 2, 3], -1) [1, 2, 3, -1] >>> _append_to_innermost_axis([[1, 2], [3, 4]], -1) [[1, 2, -1], [3, 4, -1]] >>> _append_to_innermost_axis(tf.ragged.constant([[1, 2], [3]]), -1) [[1, 2, -1], [3, -1]] Args: tensor: The tensor that should have a value appended. scalar: The value to append. Returns: A copy of `tensor` with `scalar` appended to each slice along the innermost axis. """ if isinstance(tensor, tf.RaggedTensor): if tensor.shape.rank > 2: return tensor.with_values( _append_to_innermost_axis(tensor.values, scalar) ) else: return tf.concat([tensor, tf.fill([tensor.nrows(), 1], scalar)], axis=1) else: ndims = tf.rank(tensor) paddings = tf.concat( [tf.zeros((ndims - 1, 2), dtype=tf.int32), tf.constant([[0, 1]])], axis=0, ) return tf.pad(tensor, paddings=paddings, constant_values=scalar) def _shift_right_by_one(tensor: tf.Tensor, bos_id: int = 0) -> tf.Tensor: """Shift the input tensor to the right by one position without wrapping.""" if not (tensor.dtype.is_integer or tensor.dtype.is_floating): raise ValueError(f"Only numeric types are supported. Got: {tensor.dtype}") # tf.roll wraps around the axis. rolled = tf.roll(tensor, shift=1, axis=0) # Zero out the first position by multiplying with [0, 1, 1, ..., 1]. depth = tf.shape(tensor)[0] mask = tf.one_hot(0, depth=depth, on_value=0, off_value=1, dtype=tensor.dtype) # Expand dims of mask to broadcast to rolled. dim_expansion = [slice(None, None)] + [None] * (len(rolled.shape) - 1) mask = mask[dim_expansion] return rolled * mask + (1 - mask) * bos_id def make_autoregressive_inputs( targets: tf.Tensor, sequence_id: tf.Tensor = None, output_dtype: Optional[tf.dtypes.DType] = None, bos_id: int = 0, ) -> tf.Tensor: """Generate inputs for an autoregressive model, by shifting the targets. Modified from mesh_tensorflow.transformer.transformer.autoregressive_inputs. For the first element of each sequence, the returned input id is 0. For a "packed" dataset, also pass the sequence_id tensor, which aligns with the targets tensor and contains different values for different concatenated examples. Example for a packed dataset: ``` targets = [3, 8, 2, 9, 2, 5, 4, 2, -1, -1] sequence_id = [1, 1, 1, 2, 2, 3, 3, 3, 0, 0] inputs = [1, 3, 8, 1, 9, 1, 5, 4, -1, -1] | | | These positions are set to 0 if sequence_id is not None. ``` Args: targets: a tf.int32 tensor with shape [length]. sequence_id: an optional tensor with the same shape as targets. output_dtype: an optional output data type. bos_id: bos id. Returns: a tensor with dtype tf.int32 and the same shape as targets. """ output_dtype = output_dtype or targets.dtype if sequence_id is not None and not sequence_id.dtype.is_integer: raise ValueError( "The sequence_id should be integer-valued tensors for a packed dataset." ) if sequence_id is not None and len(targets.shape) > 1: raise ValueError( "Only 1-D sequences are supported with packing. Got a " f"packed {len(targets.shape)}-D sequence." ) inputs = _shift_right_by_one(targets, bos_id) if inputs.dtype != output_dtype: inputs = tf.cast(inputs, output_dtype) # We should have a 0 at the beginning of each sequence rather than the # shifted EOS (e.g. 1) from the previous sequence. if sequence_id is not None: not_first_in_sequence = tf.equal( sequence_id, _shift_right_by_one(sequence_id) ) not_first_in_sequence = tf.cast(not_first_in_sequence, output_dtype) first_ids = tf.cast((1 - not_first_in_sequence) * bos_id, output_dtype) inputs = inputs * not_first_in_sequence + first_ids return inputs @tf.function def sum_except_first_axis(tensor): # Compute the sum along all axes except the first axes_to_sum = tuple(range(1, len(tensor.shape))) return tf.reduce_sum(tensor, axis=axes_to_sum) @seqio.map_over_dataset() def add_segment_ids(ex): ex["subsegment_ids"] = tf.zeros_like(ex["target_tokens"], dtype=tf.int32) return ex def trim_and_pad_dataset( dataset: tf.data.Dataset, feature_lengths: Mapping[str, int] ) -> tf.data.Dataset: """Trim and pad first dimension of features to `feature_lengths`. Args: dataset: tf.data.Dataset, the dataset to trim/pad examples in. feature_lengths: map from feature key to final length. Other features will be returned unchanged. Returns: Trimmed/padded tf.data.Dataset. """ def _trim_and_pad(k: str, t: tf.Tensor) -> tf.Tensor: """Trim/pad to the first axis of `t` to be of size `length`.""" if k not in feature_lengths: return t if isinstance(t, tf.RaggedTensor): t = t.to_tensor() constant_values = -1 length_k = feature_lengths[k] if isinstance(length_k, int): t = t[:length_k] pad_amt = length_k - tf.shape(t)[0] padded_t = tf.pad(t, [(0, pad_amt)] + [(0, 0)] * (len(t.shape) - 1), constant_values=constant_values) padded_t.set_shape([length_k] + t.shape.as_list()[1:]) return padded_t slices = tuple((slice(0, limit) for limit in length_k)) t = t[slices] pad_amt = tf.pad((length_k - tf.shape(t))[..., None], ((0, 0), (1, 0)), constant_values=constant_values) padded_t = tf.pad(t, pad_amt, constant_values=constant_values) padded_t.set_shape(length_k) return padded_t return dataset.map( lambda x: {k: _trim_and_pad(k, t) for k, t in x.items()}, num_parallel_calls=tf.data.experimental.AUTOTUNE, ) def get_3d_subsegments(segmented_suffix): q_lens, text_lens = segmented_suffix.nested_row_lengths() text_segments = tf.range(0, tf.shape(text_lens)[0], dtype=tf.int32) question_repeat = tf.reshape(tf.stack([tf.ones_like(q_lens), q_lens-1], 1), [-1]) question_offset = tf.range(1, tf.shape(q_lens)[0]+1, dtype=tf.int32)*200 question_offset = tf.reshape(tf.stack([question_offset, question_offset-100], 1), [-1]) text_segments = text_segments + tf.repeat(question_offset, question_repeat) segment_ids = tf.cast(tf.repeat(text_segments, text_lens), tf.int32) return segment_ids def assert_not_truncated(ds, keys, max_val): def _check(ex): for k in keys: tf.assert_less(tf.shape(ex[k])[0], max_val+1, message=f"Field {k} was unexpectedly truncated max_len={max_val}") return ex return ds.map(_check) def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random.uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def denormalize_boxes(boxes, image_shape): """Converts boxes normalized by [height, width] to pixel coordinates. Args: boxes: a tensor whose last dimension is 4 representing the coordinates of boxes in ymin, xmin, ymax, xmax order. image_shape: a list of two integers, a two-element vector or a tensor such that all but the last dimensions are `broadcastable` to `boxes`. The last dimension is 2, which represents [height, width]. Returns: denormalized_boxes: a tensor whose shape is the same as `boxes` representing the denormalized boxes. Raises: ValueError: If the last dimension of boxes is not 4. """ with tf.name_scope('denormalize_boxes'): if isinstance(image_shape, list) or isinstance(image_shape, tuple): height, width = image_shape height = tf.cast(height, dtype=boxes.dtype) width = tf.cast(width, dtype=boxes.dtype) else: image_shape = tf.cast(image_shape, dtype=boxes.dtype) height, width = tf.split(image_shape, 2, axis=-1) ymin, xmin, ymax, xmax = tf.split(boxes, 4, axis=-1) ymin = ymin * height xmin = xmin * width ymax = ymax * height xmax = xmax * width denormalized_boxes = tf.concat([ymin, xmin, ymax, xmax], axis=-1) return denormalized_boxes def pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width, value=0): return pad_to_bounding_box_internal( image, offset_height, offset_width, target_height, target_width, check_dims=True, value=value) def pad_to_bounding_box_internal(image, offset_height, offset_width, target_height, target_width, check_dims, value): with ops.name_scope(None, 'pad_to_bounding_box_with_one_internal', [image]): image = ops.convert_to_tensor(image, name='image') is_batch = True image_shape = image.get_shape() if image_shape.ndims == 3: is_batch = False image = array_ops.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = array_ops.expand_dims(image, 0) image.set_shape([None] * 4) elif image_shape.ndims != 4: raise ValueError( '\'image\' (shape %s) must have either 3 or 4 dimensions.' % image_shape) batch, height, width, depth = _ImageDimensions(image, rank=4) after_padding_width = target_width - offset_width - width after_padding_height = target_height - offset_height - height if check_dims: assert_ops = _CheckAtLeast3DImage(image, require_static=False) assert_ops += _assert(offset_height >= 0, ValueError, 'offset_height must be >= 0') assert_ops += _assert(offset_width >= 0, ValueError, 'offset_width must be >= 0') assert_ops += _assert(after_padding_width >= 0, ValueError, 'width must be <= target - offset') assert_ops += _assert(after_padding_height >= 0, ValueError, 'height must be <= target - offset') image = control_flow_ops.with_dependencies(assert_ops, image) # Do not pad on the depth dimensions. paddings = array_ops.reshape( tf.stack([ 0, 0, offset_height, after_padding_height, offset_width, after_padding_width, 0, 0 ]), [4, 2]) padded = array_ops.pad(image, paddings, constant_values=value) padded_shape = [ None if _is_tensor(i) else i for i in [batch, target_height, target_width, depth] ] padded.set_shape(padded_shape) if not is_batch: padded = array_ops.squeeze(padded, axis=[0]) return padded def resize_and_crop_boxes(boxes, image_scale, output_size, offset, paddings): """Resizes boxes to output size with scale and offset. Args: boxes: `Tensor` of shape [N, 4] representing ground truth boxes. image_scale: 2D float `Tensor` representing scale factors that apply to [height, width] of input image. output_size: 2D `Tensor` or `int` representing [height, width] of target output image size. offset: 2D `Tensor` representing top-left corner [y0, x0] to crop scaled boxes. paddings: 2D `Tensor` representing top/left paddings. Returns: boxes: `Tensor` of shape [N, 4] representing the scaled boxes. """ # Adjusts box coordinates based on image_scale, offset and paddings. boxes *= tf.tile(tf.expand_dims(image_scale, axis=0), [1, 2]) boxes -= tf.tile(tf.expand_dims(offset, axis=0), [1, 2]) boxes += tf.tile(tf.expand_dims(paddings, axis=0), [1, 2]) # Clips the boxes. boxes = clip_boxes(boxes, output_size) return boxes def clip_boxes(boxes, image_shape): """Clips boxes to image boundaries. Args: boxes: a tensor whose last dimension is 4 representing the coordinates of boxes in ymin, xmin, ymax, xmax order. image_shape: a list of two integers, a two-element vector or a tensor such that all but the last dimensions are `broadcastable` to `boxes`. The last dimension is 2, which represents [height, width]. Returns: clipped_boxes: a tensor whose shape is the same as `boxes` representing the clipped boxes. Raises: ValueError: If the last dimension of boxes is not 4. """ if boxes.shape[-1] != 4: raise ValueError('boxes.shape[-1] is {:d}, but must be 4.'.format( boxes.shape[-1])) with tf.name_scope('clip_boxes'): if isinstance(image_shape, list) or isinstance(image_shape, tuple): height, width = image_shape max_length = [height, width, height, width] else: image_shape = tf.cast(image_shape, dtype=boxes.dtype) height, width = tf.unstack(image_shape, axis=-1) max_length = tf.stack( [height, width, height, width], axis=-1) clipped_boxes = tf.math.maximum(tf.math.minimum(boxes, max_length), 0.0) return clipped_boxes def get_non_empty_box_indices(boxes): """Get indices for non-empty boxes.""" # Selects indices if box height or width is 0. height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] indices = tf.where( tf.logical_and(tf.greater(height, 0), tf.greater(width, 0))) return indices[:, 0] def resize_and_pad(image, desired_output_size, masks=None, boxes=None, labels=None, random_scale_min=0.1, random_scale_max=2.0, do_random_scale=False, shrink_both_sides=True, boxes1=None, filter_box=True, desired_target_size=None, random_scale_ratio=0.0, resize_method=tf.image.ResizeMethod.BILINEAR, return_outputs=True, pad_value=0, normalize=True): desired_height, desired_width = desired_output_size desired_height_f = tf.cast(desired_height, dtype=tf.float32) desired_width_f = tf.cast(desired_width, dtype=tf.float32) height = tf.cast(tf.shape(image)[0], tf.float32) width = tf.cast(tf.shape(image)[1], tf.float32) if boxes is not None: # Converts boxes from normalized coordinates to pixel coordinates. # Now the coordinates of boxes are w.r.t. the original image. boxes = denormalize_boxes(boxes, [height, width]) if boxes1 is not None: boxes1 = denormalize_boxes(boxes1, [height, width]) if do_random_scale: random_scale_factor = tf.random.uniform([], random_scale_min, random_scale_max) if not shrink_both_sides: # Max random is where scale * W > W_desired # scale * H > H_desired rsf_max = tf.maximum(desired_width_f / width, desired_height_f / height) random_scale_factor = tf.minimum(rsf_max, random_scale_factor) scaled_y = tf.cast(random_scale_factor * desired_height_f, tf.int32) scaled_x = tf.cast(random_scale_factor * desired_width_f, tf.int32) # Recompute the accurate scale_factor using rounded scaled image size. image_scale_y = tf.cast(scaled_y, tf.float32) / height image_scale_x = tf.cast(scaled_x, tf.float32) / width image_scale = tf.cond(tf.less( tf.random.uniform([], minval=0, maxval=1, dtype=tf.float32), tf.cast(random_scale_ratio, tf.float32)), lambda: tf.maximum(image_scale_x, image_scale_y), lambda: tf.minimum(image_scale_x, image_scale_y)) # image_scale = tf.minimum(image_scale_x, image_scale_y) # Conceptual captions has some REALLY WIDE images I believe # this ensures that we won't scale any side lower than to 64 image_scale = tf.maximum(image_scale, 64.0 / tf.minimum(height, width)) # Select non-zero random offset (x, y) if scaled image is larger than # self._output_size. scaled_height = tf.cast(height * image_scale, tf.int32) scaled_width = tf.cast(width * image_scale, tf.int32) offset_y = tf.cast(scaled_height - desired_height, tf.float32) offset_x = tf.cast(scaled_width - desired_width, tf.float32) offset_y = tf.maximum(0.0, offset_y) * tf.random.uniform([], 0, 1) offset_x = tf.maximum(0.0, offset_x) * tf.random.uniform([], 0, 1) offset_y = tf.cast(offset_y, tf.int32) offset_x = tf.cast(offset_x, tf.int32) else: image_scale_y = desired_height_f / height image_scale_x = desired_width_f / width image_scale = tf.minimum(image_scale_x, image_scale_y) scaled_height = tf.cast(height * image_scale, tf.int32) scaled_width = tf.cast(width * image_scale, tf.int32) offset_y = tf.constant(0) offset_x = tf.constant(0) # Now resize and crop if resize_method == 'random' and do_random_scale: resize_methods = sorted([k for k in tf.image.ResizeMethod.__dict__.keys() if k.isupper()]) image = apply_with_random_selector( image, lambda x, method_idx: tf.image.resize(x, [scaled_height, scaled_width], tf.image.ResizeMethod.__dict__[resize_methods[method_idx]], antialias=True), num_cases=len(resize_methods)) elif resize_method != 'random': image = tf.image.resize(image, [scaled_height, scaled_width], method=resize_method, antialias=True) else: image = tf.image.resize(image, [scaled_height, scaled_width], method=tf.image.ResizeMethod.BILINEAR, antialias=True) image = tf.clip_by_value(image, 0.0, 1.0) # H x W x C image = image[offset_y:offset_y + desired_height, offset_x:offset_x + desired_width, :] H = tf.shape(image)[0] W = tf.shape(image)[1] top_pad = (desired_height - H) // 2 left_pad = (desired_width - W) // 2 image_mask = pad_to_bounding_box( tf.ones_like(image, dtype=tf.bool), top_pad, left_pad, desired_height, desired_width)[:,:,0] image = pad_to_bounding_box(image, top_pad, left_pad, desired_height, desired_width, value=pad_value) if isinstance(desired_height, int) and isinstance(desired_width, int): image.set_shape([desired_height, desired_width, 3]) if masks is not None and tf.size(masks) != 0: masks = tf.image.resize(masks, [scaled_height, scaled_width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) if len(masks.shape) == 3: masks = masks[offset_y:offset_y + desired_height, offset_x:offset_x + desired_width] else: masks = masks[:, offset_y:offset_y + desired_height, offset_x:offset_x + desired_width] masks = pad_to_bounding_box(masks, top_pad, left_pad, desired_height, desired_width) masks = tf.image.resize(masks, desired_target_size, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) indices = None if boxes is not None: # assert ValueError("the box need to be shift which is not tested yet.") boxes = resize_and_crop_boxes( boxes, tf.stack([image_scale, image_scale]), [desired_height, desired_width], tf.cast(tf.stack([offset_y, offset_x]), dtype=tf.float32), tf.cast(tf.stack([top_pad, left_pad]), dtype=tf.float32)) if filter_box: indices = get_non_empty_box_indices(boxes) else: indices = tf.range(tf.shape(boxes)[0]) boxes = tf.gather(boxes, indices) if labels is not None: labels = tf.gather(labels, indices) if boxes1 is not None: boxes1 = resize_and_crop_boxes( boxes1, tf.stack([image_scale, image_scale]), [desired_height, desired_width], tf.cast(tf.stack([offset_y, offset_x]), dtype=tf.float32), tf.cast(tf.stack([top_pad, left_pad]), dtype=tf.float32)) image_info = tf.stack([ tf.cast(top_pad, tf.float32), tf.cast(left_pad, tf.float32), 1.0 / image_scale, height, width, tf.cast(offset_y, dtype=tf.float32) / height, tf.cast(offset_x, dtype=tf.float32) / width, tf.cast(offset_y, dtype=tf.float32), tf.cast(offset_x, dtype=tf.float32), tf.cast(scaled_height, dtype=tf.float32), tf.cast(scaled_width, dtype=tf.float32), ]) if boxes1 is not None: outputs = (image_info, masks, boxes, labels, indices, boxes1) else: outputs = (image_info, masks, boxes, labels, indices) if normalize: image = normalize_image(image) if return_outputs: return image, image_mask, outputs else: return image, image_mask def _remove_bars_from_frames(frames, black_bar=True, threshold=32, max_perc_to_trim=0.3): """ :param frames: [num_frames, height, width, 3] :param blackbar_threshold: Pixels must be this intense for us to not trim :param max_perc_to_prim: Will trim x% by default of the image at most in each dimension :return: """ # Detect black bars#################### frames_shape = tf.shape(frames) h, w = frames_shape[1], frames_shape[2] if black_bar: has_content = tf.reduce_max(frames, axis=(0, -1)) >= threshold else: has_content = tf.reduce_min(frames, axis=(0, -1)) <= threshold y_frames = tf.cast(tf.reshape(tf.where(tf.reduce_any(has_content, axis=1)), [-1]), tf.int32) nhbars = tf.shape(y_frames)[0] y_frames = tf.cond(nhbars > 0, lambda: y_frames, lambda: tf.expand_dims(tf.cast(h // 2, tf.int32), axis=0)) y1 = tf.minimum(y_frames[0], tf.cast(tf.cast(h, tf.float32) * max_perc_to_trim, tf.int32)) y2 = tf.maximum(y_frames[-1] + 1, tf.cast(tf.cast(h, tf.float32) * (1 - max_perc_to_trim), tf.int32)) x_frames = tf.cast(tf.reshape(tf.where(tf.reduce_any(has_content, axis=0)), [-1]), tf.int32) nvbars = tf.shape(x_frames)[0] x_frames = tf.cond(nvbars > 0, lambda: x_frames, lambda: tf.expand_dims(tf.cast(w // 2, tf.int32), axis=0)) x1 = tf.minimum(x_frames[0], tf.cast(tf.cast(w, tf.float32) * max_perc_to_trim, tf.int32)) x2 = tf.maximum(x_frames[-1] + 1, tf.cast(tf.cast(w, tf.float32) * (1 - max_perc_to_trim), tf.int32)) frames = frames[:, y1:y2, x1:x2] return frames def convert_video_dtype(video,dtype): """ Converts tensor to dtype and scales the values. Video equivalent of tf.convert_image_dtype: https://www.tensorflow.org/api_docs/python/tf/image/convert_image_dtype """ return tf.map_fn( fn=functools.partial( tf.image.convert_image_dtype, dtype=dtype), elems=video, fn_output_signature=dtype) def stateless_shuffle(x: tf.Tensor, seed): if hasattr(tf.random.experimental, 'stateless_shuffle'): return tf.random.experimental.stateless_shuffle(x, seed=seed) else: vals = tf.random.stateless_uniform(tf.shape(x)[:1], seed) ixs = tf.argsort(vals) return tf.gather(x, ixs) def stateless_permutation(n: int, seed): if hasattr(tf.random.experimental, 'stateless_shuffle'): ix = tf.range(0, n, dtype=tf.int32) return tf.random.experimental.stateless_shuffle(ix, seed=seed) else: vals = tf.random.stateless_uniform(n, seed) return tf.argsort(vals) @seqio.map_over_dataset def _strip_metadata(example): return pop_metadata(example)[0] def sample_patches(mask, n_patches, stateless=False, seeds=None): input_sample_valid = tf.boolean_mask(tf.range(tf.shape(mask)[0]), mask) input_sample_masked = tf.boolean_mask(tf.range(tf.shape(mask)[0]), mask == 0) if stateless: encoder_pos_ids = tf.concat([ stateless_shuffle(input_sample_valid, seeds[0]), stateless_shuffle(input_sample_masked, seeds[1])], axis=0)[:n_patches] else: encoder_pos_ids = tf.concat([ tf.random.shuffle(input_sample_valid), tf.random.shuffle(input_sample_masked)], axis=0)[:n_patches] encoder_pos_ids = tf.reshape(encoder_pos_ids, (n_patches,)) encoder_pos_ids = tf.cast(encoder_pos_ids, tf.int32) return encoder_pos_ids @gin.configurable() def normalize_image(image, offset=(0.48145466, 0.4578275, 0.40821073), scale=(0.26862954, 0.26130258, 0.27577711)): """Normalizes the image to zero mean and unit variance.""" offset = tf.constant(offset) offset = tf.expand_dims(offset, axis=0) offset = tf.expand_dims(offset, axis=0) image -= tf.cast(offset, image.dtype) scale = tf.constant(scale) scale = tf.expand_dims(scale, axis=0) scale = tf.expand_dims(scale, axis=0) image /= tf.cast(scale, image.dtype) return image def unnormalize_image(image, offset=(0.48145466, 0.4578275, 0.40821073), scale=(0.26862954, 0.26130258, 0.27577711)): """Normalizes the image to zero mean and unit variance.""" scale = tf.cast(tf.expand_dims(tf.expand_dims(tf.constant(scale), axis=0), axis=0), image.dtype) image *= scale offset = tf.cast(tf.expand_dims(tf.expand_dims(tf.constant(offset), axis=0), axis=0), image.dtype) image += offset return image def flatten_parts(ds: tf.data.Dataset, parts: List[str], add_index=False, dataset_size=None) -> tf.data.Dataset: def _flatten(ex): flat_key = {k: ex[k] for k in parts} if add_index: flat_key['index'] = tf.range(len(ex[parts[0]])) flat_ds = tf.data.Dataset.from_tensor_slices(flat_key) def _merge(_flat_ex): for k, v in ex.items(): if k not in parts: _flat_ex[k] = v return _flat_ex return flat_ds.map(_merge) ds = ds.flat_map(_flatten) if dataset_size is not None: ds = tf.data.experimental.assert_cardinality(dataset_size)(ds) return ds