MolmoE-1B-0924 / iterable_dataset.py
Muennighoff's picture
Cp over files
18652d8
raw
history blame
9.55 kB
import logging
import math
import multiprocessing
import os
import pickle
import queue
import socket
import time
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from multiprocessing.managers import BaseManager
from multiprocessing.shared_memory import SharedMemory
from os.path import exists
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Sequence, Union
import psutil
import tensorflow as tf
import numpy as np
import torch
import torch.utils.data
import clu
from clu.data.dataset_iterator import Element
from .aliases import PathOrStr
from .torch_util import barrier, get_fs_local_rank, get_global_rank, get_world_size, get_node_rank, \
get_local_world_size, get_local_rank, move_to_device
from .util import roundrobin, threaded_generator
from .data_factory import SeqioDataset
from .multimodal_preprocessor import MultiModalPreprocessor
from .preprocesssors import rename
import torch.distributed as dist
from . import tasks
__all__ = ["MMIterableDataset"]
log = logging.getLogger(__name__)
def batch_fn(batch, for_inference):
if for_inference:
out = {}
for k, v in batch.items():
if k.startswith("metadata/"):
out[k] = v
else:
out[k] = torch.from_numpy(v)
return out
else:
out = {k: torch.from_numpy(v) for k, v in batch.items() if not k.startswith("metadata/")}
out["metadata"] = [{} for _ in out["input_ids"]]
return out
class PyTorchDatasetIterator(clu.data.dataset_iterator.TfDatasetIterator):
def __init__(self, dataset, *, checkpoint: bool, for_inference: bool):
self.for_inference = for_inference
super().__init__(dataset, checkpoint=checkpoint)
def __next__(self) -> Element:
batch = {k: v.numpy() for k, v in next(self.iterator).items()}
return batch_fn(batch, self.for_inference)
def __len__(self) -> int:
return len(self._dataset)
class MMIterableDataset(torch.utils.data.IterableDataset[Dict[str, Any]]):
def __init__(
self,
dataset: SeqioDataset,
preprocessor: MultiModalPreprocessor,
world_size: Optional[int] = None,
rank: Optional[int] = None,
):
self.preprocessor = preprocessor
self.rank = rank if rank is not None else get_global_rank()
self.world_size = world_size if world_size is not None else get_world_size()
self.dataset_config = dataset
data_iter = dataset.build(
self.preprocessor,
self.rank,
self.world_size,
)
data_iter: tf.data.Dataset = rename(input_ids="input_tokens", labels="target_tokens")(data_iter)
self.dataset = data_iter
self.data_iter = PyTorchDatasetIterator(
data_iter, checkpoint=True, for_inference=dataset.for_inference)
def reset(self):
self.data_iter.reset()
def save(self, filename: PathOrStr):
self.data_iter.save(filename)
def restore(self, filename: PathOrStr):
self.data_iter.restore(filename)
def __iter__(self) -> Iterator[Dict[str, Any]]:
return self.data_iter
def _split_batch(batch, n):
subbatches = [{} for _ in range(n)]
for k, v in batch.items():
assert len(v) % n == 0, f"n={n} but {k} has {len(v)}"
subatch_dim = len(v) // n
for i, subbatch in enumerate(subbatches):
subbatch[k] = v[i * subatch_dim:(i + 1) * subatch_dim]
return subbatches
def tf_to_torch_dtype(tf_dtype):
dtype_mapping = {
tf.float16: torch.float16,
tf.float32: torch.float32,
tf.float64: torch.float64,
tf.int8: torch.int8,
tf.uint8: torch.uint8,
tf.int16: torch.int16,
tf.int32: torch.int32,
tf.int64: torch.int64,
tf.bool: torch.bool,
}
return dtype_mapping[tf_dtype]
class PeerToPeer(torch.utils.data.IterableDataset[Dict[str, Any]]):
"""
This dataloader runs the tf.data.Dataset on one processes per a node, and then
transfers the batch to the other processes. For 7B model about a 10% performance
despite my attempts to make it asynchronous
The advantage is that it avoids the overhead of running multiple tf.data.Dataset
in one node
"""
def __init__(
self,
dataset: SeqioDataset,
preprocessor: MultiModalPreprocessor,
world_size: Optional[int] = None,
rank: Optional[int] = None,
device=None
):
assert get_world_size() % get_local_world_size() == 0
self.device = device
self.device_batch_size = dataset.global_batch_size // get_world_size()
self.preprocessor = preprocessor
self.seqio_dataset = dataset
lws = get_local_world_size()
if get_local_rank() == 0:
tf_dataset = dataset.build(
self.preprocessor,
get_node_rank(),
get_world_size() // lws,
)
tf_dataset = rename(input_ids="input_tokens", labels="target_tokens")(tf_dataset)
self.dataset = tf_dataset
device_spec = {k: ((v.shape[0]//lws,) + tuple(v.shape[1:]), tf_to_torch_dtype(v.dtype))
for k, v in tf_dataset.element_spec.items()}
else:
self.dataset = None
device_spec = None
broadcast = [device_spec]
torch.distributed.broadcast_object_list(broadcast)
self.device_spec = broadcast[0]
self._node_group_ranks = ranks = [(i + get_node_rank()*lws) for i in range(lws)]
if get_local_rank() == 0:
assert get_global_rank() == self._node_group_ranks[0]
self._keys = sorted(self.device_spec)
self.multithread_pin = False
def _pin(self, it, on):
batch = next(it)
batch = {k: torch.from_numpy(v) for k, v in batch.items()}
batch = _split_batch(batch, len(self._node_group_ranks))
return [{k: v.pin_memory() for k, v in subbatch.items()} for subbatch in batch]
def _send_pinned(self, batch):
requests = []
for rank_ix, rank in enumerate(self._node_group_ranks[1:], start=1):
for k in self._keys:
batch[rank_ix][k] = batch[rank_ix][k].to(self.device, non_blocking=True)
requests.append(dist.P2POp(dist.isend, batch[rank_ix][k], rank))
ops = dist.batch_isend_irecv(requests)
return batch[0], ops
def _send(self, it, on):
if get_local_rank() == 0:
try:
batch = next(it)
batch = {k: torch.from_numpy(v) for k, v in batch.items()}
batch = _split_batch(batch, len(self._node_group_ranks))
except StopIteration:
# Special batch to indicate iteration is done
batch = [
{k: torch.full(sh, -10, dtype=dtype, device=self.device)
for k, (sh, dtype) in self.device_spec.items()}
for _ in range(len(self._node_group_ranks))
]
# pin_memory so the device transfer can be non_blocking
batch = [{k: v.pin_memory() for k, v in subbatch.items()}
for subbatch in batch]
requests = []
for rank_ix, rank in enumerate(self._node_group_ranks[1:], start=1):
for k in self._keys:
batch[rank_ix][k] = batch[rank_ix][k].to(self.device, non_blocking=True)
requests.append(dist.P2POp(dist.isend, batch[rank_ix][k], rank))
ops = dist.batch_isend_irecv(requests)
batch = batch[0]
else:
batch = {k: torch.zeros(sh, dtype=dtype, device=self.device)
for k, (sh, dtype) in self.device_spec.items()}
requests = []
for k in self._keys:
requests.append(dist.P2POp(dist.irecv, batch[k], self._node_group_ranks[0]))
ops = dist.batch_isend_irecv(requests)
return batch, ops
def __iter__(self):
on = 0
if get_local_rank() == 0:
it = iter(self.dataset.as_numpy_iterator())
else:
it = None
if get_local_rank() == 0 and self.multithread_pin:
# Try to be clever and do memory pinning in a seperate thread, in practice
# didn't seem to help much so off by default for now
# Currently does not support finite dataset
with ThreadPoolExecutor(max_workers=1) as pool:
_is_sending = self._send_pinned(self._pin(it, on))
_is_pinning = pool.submit(self._pin, it, on)
on += 1
while True:
result = _is_sending
_is_sending = self._send_pinned(_is_pinning.result())
_is_pinning = pool.submit(self._pin, it, on)
on += 1
for op in result[1]:
op.wait()
yield result[0]
else:
_in_flight = self._send(it, on)
on += 1
while True:
on += 1
next_batch = self._send(it, on) # queue up the next batch
for op in _in_flight[1]: # wait for the current batch
op.wait()
if _in_flight["input_ids"][0] != -10: # indicates no more data
return
yield _in_flight[0]
_in_flight = next_batch