File size: 75,068 Bytes
18652d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
import dataclasses
import logging
import re
from collections import defaultdict
from typing import Tuple, Optional, Any, Dict, List, Union, Mapping

import einops
import seqio
import numpy as np
import tensorflow as tf

from .mm_data import seqio_tokenizer
from .data_utils import pad_to_bounding_box, \
    get_3d_subsegments, _append_to_innermost_axis, resize_and_pad, \
    apply_with_random_selector, get_special_token_ids, make_autoregressive_inputs, \
    trim_and_pad_dataset, assert_not_truncated
from .prompts import apply_keyword_prompt, STYLE_TO_GENERAL_PROMPT, GENERAL_PROMPTS_V1
import .constants as config


def siglip_resize(src, imgsize, truncate):
    """Resize and preprocess for SigLIP ViT in the offical jax implementation"""
    assert src.dtype == tf.uint8
    # SigCLIP removes aspect ratio by default
    resized = tf.image.resize(src, imgsize, method=tf.image.ResizeMethod.BILINEAR, antialias=False)
    dtype = src.dtype
    tf_dtype = tf.type_spec_from_value(src).dtype
    resized = tf.cast(tf.clip_by_value(resized, tf_dtype.min, tf_dtype.max), dtype)

    # Normalize between -1 and 1 without using imagenet standard mean/std
    vmin=-1; vmax=1; in_min=0; in_max=255.0
    in_min_t = tf.constant(in_min, tf.float32)
    in_max_t = tf.constant(in_max, tf.float32)
    image = tf.cast(resized, tf.float32)
    image = (image - in_min_t) / (in_max_t - in_min_t)
    image = vmin + image * (vmax - vmin)
    if truncate:
        image = image[:truncate, :truncate]
    return image


def extract_bboxes(text, image_w, image_h):
    points = extract_points(text, image_w, image_h)
    boxes = []
    for i in range(len(points)//2):
        x1, y1 = points[i*2]
        x2, y2 = points[i*2 + 1]
        boxes.append([x1, y1, x2, y2])
    return boxes


def extract_annotated_points(caption, image_w, image_h):
    points = []
    for match in re.finditer("<point x=\"([0-9\\.]*)\" y=\"([0-9\\.]*)\" alt=\"([^\"]*)\">", caption):
        x = float(match.group(1))
        y = float(match.group(2))
        points.append(([[x, y]], match.group(3)))
    for match in re.finditer("<points ([^<]*) alt=\"([^\"]*)\">", caption):
        loc_str = match.group(1)
        locations = defaultdict(dict)
        if loc_str.startswith("points="):
            point_grp = []
            for point_match in re.finditer(r"([0-9]+\.[0-9]),? ([0-9]+\.[0-9])", loc_str):
                try:
                    point = [float(point_match.group(i)) for i in range(1, 3)]
                    point_grp.append(point)
                except ValueError:
                    pass
        else:
            for val in loc_str.split():
                try:
                    key, val = val.split("=")
                    locations[key[1:]][key[:1]] = float(val.strip("\""))
                except ValueError:
                    import pdb; pdb.set_trace()
                    logging.warning(f"Failed to parse {val} from {match.group(0)}")
            point_grp = []
            for key, coords in locations.items():
                if sorted(coords) == ["x", "y"]:
                    point_grp.append([coords["x"], coords["y"]])
        if point_grp:
            points.append((point_grp, match.group(2)))

    normalized = []
    for point_grp, point_text in points:
        normalized.append((
            np.array(point_grp) / 100.0 * np.array([image_w, image_h]),
            point_text,
        ))
    return normalized


def extract_points(text, image_w, image_h):
    all_points = []
    for match in re.finditer(r"Click\(([0-9]+\.[0-9]), ?([0-9]+\.[0-9])\)", text):
        try:
            point = [float(match.group(i)) for i in range(1, 3)]
        except ValueError:
            pass
        else:
            point = np.array(point)
            if np.max(point) > 100:
                # Treat as an invalid output
                continue
            point /= 100.0
            point = point * np.array([image_w, image_h])
            all_points.append(point)

    for match in re.finditer(r"\(([0-9]+\.[0-9]),? ?([0-9]+\.[0-9])\)", text):
        try:
            point = [float(match.group(i)) for i in range(1, 3)]
        except ValueError:
            pass
        else:
            point = np.array(point)
            if np.max(point) > 100:
                # Treat as an invalid output
                continue
            point /= 100.0
            point = point * np.array([image_w, image_h])
            all_points.append(point)
    for match in re.finditer(r'x\d*="\s*([0-9]+(?:\.[0-9]+)?)"\s+y\d*="\s*([0-9]+(?:\.[0-9]+)?)"', text):
        try:
            point = [float(match.group(i)) for i in range(1, 3)]
        except ValueError:
            pass
        else:
            point = np.array(point)
            if np.max(point) > 100:
                # Treat as an invalid output
                continue
            point /= 100.0
            point = point * np.array([image_w, image_h])
            all_points.append(point)
    for match in re.finditer(r'(?:\d+|p)\s*=\s*([0-9]{3})\s*,\s*([0-9]{3})', text):
        try:
            point = [int(match.group(i)) / 10.0 for i in range(1, 3)]
        except ValueError:
            pass
        else:
            point = np.array(point)
            if np.max(point) > 100:
                # Treat as an invalid output
                continue
            point /= 100.0
            point = point * np.array([image_w, image_h])
            all_points.append(point)
    return all_points


def extract_points_from_point_count(text, image_w, image_h):
    all_points = []
    points = re.findall(r"(\d+\.\d+),\s*(\d+\.\d+)", text)
    
    for match in points:
        try:
            point = [float(match[0]), float(match[1])]
        except ValueError:
            pass
        else:
            point = np.array(point)
            if np.max(point) > 100:
                # Treat as an invalid output
                continue
            point = point * np.array([image_w, image_h])
            all_points.append(point)
    return all_points


def select_tiling(h, w, patch_size, max_num_patches):
    """Decide how best to divide in image of size [w, h] in up to max_num_patches of size patch_size"""
    original_size = tf.stack([h, w])  # [1, 2]
    original_res = h * w
    tilings = []
    for i in range(1, max_num_patches+1):
        for j in range(1, max_num_patches+1):
            if i*j <= max_num_patches:
                tilings.append((i, j))
    # sort so argmin and argmax favour smaller tilings in the event of a tie
    tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
    candidate_tilings = tf.constant(tilings, dtype=tf.int32)  # [n_resolutions, 2]
    candidate_resolutions = candidate_tilings * patch_size  # [n_resolutions, 2]

    # How much we would need to scale the image to fit exactly in each tiling
    required_scale_d = tf.cast(candidate_resolutions, tf.float32) / tf.cast(original_size[None, :], tf.float32)
    required_scale = tf.reduce_min(required_scale_d, axis=-1, keepdims=True)  # [n_resolutions, 1]
    if tf.reduce_all(required_scale < 1):
        # We are forced to downscale, so try to minimize the amount of downscaling
        ix = tf.argmax(required_scale)[0]
    else:
        # Pick the resolution that required the least upscaling so that it most closely fits the image
        required_scale = tf.where(required_scale < 1.0, 10e9, required_scale)
        ix = tf.argmin(required_scale)[0]
    return candidate_tilings[ix]


DEMO_STYLES = [
    "point_count",
    "pointing",
    "user_qa",
    "scifi_charts_exp",
    "scifi_charts_exp",
    "scifi_charts_exp",
    "scifi_charts_exp",
    "long_caption",
    "named_entity"
]


@dataclasses.dataclass
class MultiModalPreprocessor:
    """Turns text/image inputs into tensors that can be input to the model"""
    tokenizer: Any

    # How to prompt the model
    prompt_templates: str = "none"  # How to template prompts for examples
    message_format: str = "none"  # How to format messages
    system_prompt: Optional[str] = None  # How to generate system prompts
    prompt_override: Optional[str] = None  # Used for setting prompt manually
    always_start_with_space: bool = False  # Always include a leading space for the first bit of text
    default_inference_len: int = 65  # Inference len for length-conditioned prompting

    # How to crops/resize images
    crop_mode: str = "resize"
    max_crops: int = 6
    overlap_margins: Tuple[int, int] = (4, 4)
    do_random_scale: Optional[bool] = False
    resize: str = "default"
    random_scale_max: float = 1.1
    random_scale_min: float = 0.9
    random_scale_ratio: float = 0.5
    use_col_tokens: bool = True

    # Data about the ViT and connector we need when deciding the crops
    base_image_input_size: Tuple[int, int] = (336, 336)
    image_token_length_w: int = 12
    image_token_length_h: int = 12
    image_patch_size: int = 14
    image_padding_mask: bool = False

    # Other settings
    loss_token_weighting: Optional[str] = None
    unconditioned: Union[bool, float] = False  # Ignore images
    fix_image_input_idx: int = 2  # backwards compatibility fix
    pad_to: Optional[int] = None  # experimental feature

    _special_tokens: Dict[str, int] = None
    split_at: Optional[int] = None

    def get_max_total_crops(self):
        if self.crop_mode == "resize":
            return 1
        elif "resize" in self.crop_mode:
            return 1 + self.max_crops
        else:
            return self.max_crops

    @property
    def image_num_patch(self):
        h, w = self.base_image_input_size
        return h//self.image_patch_size, w//self.image_patch_size

    @property
    def special_token_ids(self):
        if self._special_tokens is None:
            self._special_tokens = get_special_token_ids(self.tokenizer)
        return self._special_tokens

    def image_to_patches_and_tokens(self, image, is_training):
        """Preprocesses an image

        Args:
            image: [h, w, 3] image to preprocessing
        Returns:
            crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
                   change between images but the other dimension are fixed
            tokens: (n_tokens,) tf.int32 tokens, pad tokens indicate where to insert the
                                patch features, might include other special tokens as well
            patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
                            into the `tokens`, negative values indicates patches features to exclude
            padding_mask: (n_crops, h, w) mask of what pixels are padding, can be None
        """
        do_random_scale = self.do_random_scale
        if do_random_scale:
            do_random_scale = is_training

        base_image_input_size = self.base_image_input_size
        if isinstance(base_image_input_size, int):
            base_image_input_size = (base_image_input_size, base_image_input_size)

        image_token_length_w, image_token_length_h = self.image_token_length_w, self.image_token_length_h
        base_image_input_d = self.image_patch_size
        tokens_per_image = image_token_length_w * image_token_length_h
        image_base_patch_w = base_image_input_size[1] // base_image_input_d
        image_base_patch_h = base_image_input_size[0] // base_image_input_d
        extra_image = False
        patch_ordering = None

        if self.resize == "default":
            image = tf.image.convert_image_dtype(image, dtype=tf.float32)
            def _resize(_image, sz):
                return resize_and_pad(
                    _image, sz,
                    do_random_scale=do_random_scale,
                    random_scale_max=self.random_scale_max,
                    random_scale_min=self.random_scale_min,
                    random_scale_ratio=self.random_scale_ratio,
                    return_outputs=False,
                    resize_method='random' if is_training else tf.image.ResizeMethod.BILINEAR)
        elif self.resize == "stretch":
            image = tf.image.convert_image_dtype(image, dtype=tf.float32)
            assert not do_random_scale

            def _resize(_image, sz):
                if not is_training:
                    img = tf.image.resize(_image, sz, antialias=True, method=tf.image.ResizeMethod.BILINEAR)
                else:
                    resize_methods = sorted([k for k in tf.image.ResizeMethod.__dict__.keys() if k.isupper()])
                    img = apply_with_random_selector(
                        _image,
                        lambda x, method_idx: tf.image.resize(x, sz,
                                                              tf.image.ResizeMethod.__dict__[resize_methods[method_idx]],
                                                              antialias=True),
                        num_cases=len(resize_methods))
                return img, tf.ones(tf.shape(img)[:2], dtype=tf.bool)
        elif self.resize in "siglip":
            assert not do_random_scale

            def _resize(_image, sz):
                img = siglip_resize(_image, sz, truncate=None)
                return img, tf.ones(tf.shape(img)[:2], dtype=tf.bool)
        else:
            raise NotImplementedError(self.resize)

        def _img_to_patches(_img, _img_mask, dy=1, dx=1):
            _img = einops.rearrange(
                _img, '(dy h dh) (dx w dw) c -> (dy dx) (h w) (dh dw c)',
                dh=base_image_input_d,
                dw=base_image_input_d,
                dy=dy,
                dx=dx,
                h=image_base_patch_h,
                w=image_base_patch_w
            )
            _img_mask = einops.rearrange(
                _img_mask, '(dy h dh) (dx w dw) -> (dy dx) (h w) (dh dw)',
                dh=base_image_input_d,
                dw=base_image_input_d,
                dy=dy,
                dx=dx,
                h=image_base_patch_h,
                w=image_base_patch_w
            )
            return _img, tf.reduce_mean(tf.cast(_img_mask, tf.float32), -1)

        mode = self.crop_mode
        if mode == "resize":
            patches, img_mask = _resize(image, base_image_input_size)
            patches, img_mask = _img_to_patches(patches, img_mask)
            image_layout_impatch_w = 1
            image_layout_impatch_h = 1
            patch_ordering = tf.range(tokens_per_image)[None, :]

        elif mode in ["overlap", "overlap-and-resize-c2"]:
            original_image_h = tf.shape(image, out_type=tf.int32)[0]
            original_image_w = tf.shape(image, out_type=tf.int32)[1]
            crop_size = base_image_input_size[0]

            # Discard this many patches from the (left/top, right/bottom) of crops
            left_margin, right_margin = self.overlap_margins
            # left_margin, right_margin = 2, 2
            assert left_margin % 2 == 0  # Required for compatibility with 2x2 pooling
            total_margin_pixels = base_image_input_d*(right_margin + left_margin)  # pixels removed per dim
            crop_patches = base_image_input_size[0] // base_image_input_d  # patches per crop dim
            crop_window_patches = crop_patches - (right_margin + left_margin)  # usable patches
            crop_window_size = crop_window_patches * base_image_input_d
            tiling = select_tiling(original_image_h - total_margin_pixels, original_image_w - total_margin_pixels,
                                   crop_window_size, self.max_crops)
            src, img_mask = _resize(
                image, [tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels])

            n_crops = tiling[0]*tiling[1]
            patches_arr = tf.TensorArray(
                tf.float32, n_crops, element_shape=[crop_size, crop_size, 3])
            mask_arr = tf.TensorArray(
                tf.bool, n_crops, element_shape=[crop_size, crop_size])
            # We assume 2x2 pooling, but can allow padding the right/bottom with extra
            # patches if the number of patches per side is not even
            assert (crop_patches+1)//2 == image_token_length_h
            assert (crop_patches+1)//2 == image_token_length_w
            patch_ordering_arr = tf.TensorArray(
                tf.int32, n_crops, element_shape=[image_token_length_h, image_token_length_w])
            on = 0
            on_patch = 0
            for i in range(tiling[0]):
                y0 = i*crop_window_size
                if i == 0:
                    crop_y0 = 0
                else:
                    crop_y0 = left_margin // 2

                crop_h = image_base_patch_h - (right_margin + left_margin)
                if i == 0:
                    crop_h += left_margin
                if i == (tiling[0]-1):
                    crop_h += right_margin
                for j in range(tiling[1]):
                    x0 = j*crop_window_size
                    if j == 0:
                        crop_x0 = 0
                    else:
                        crop_x0 = left_margin // 2

                    crop_w = image_base_patch_w - (right_margin + left_margin)
                    if j == 0:
                        crop_w += left_margin
                    if j == (tiling[1]-1):
                        crop_w += right_margin

                    pooled_w = (crop_w + 1) // 2
                    pooled_h = (crop_h + 1) // 2
                    patch_ordering_arr = patch_ordering_arr.write(
                        on_patch,
                        pad_to_bounding_box(
                            tf.reshape(tf.range(on, on+pooled_h*pooled_w, dtype=tf.int32), (pooled_h, pooled_w, 1)),
                            crop_y0, crop_x0, image_token_length_h, image_token_length_w, value=-1
                        )[:, :, 0]
                    )
                    patches_arr = patches_arr.write(on_patch, src[y0:y0+crop_size, x0:x0+crop_size])
                    mask_arr = mask_arr.write(on_patch, img_mask[y0:y0+crop_size, x0:x0+crop_size])

                    on += pooled_h*pooled_w
                    on_patch += 1
            patches = patches_arr.stack()
            patch_ordering = patch_ordering_arr.stack()
            img_mask = mask_arr.stack()

            image_layout_impatch_w, image_layout_impatch_h = tiling[0], tiling[1]
            patches = einops.rearrange(
                patches, 'p (h dh) (w dw) c -> p (h w) (dh dw c)',
                dh=base_image_input_d,
                dw=base_image_input_d,
                h=image_base_patch_h,
                w=image_base_patch_w
            )
            img_mask = einops.rearrange(
                img_mask, 'p (h dh) (w dw) -> p (h w) (dh dw)',
                dh=base_image_input_d,
                dw=base_image_input_d,
                h=image_base_patch_h,
                w=image_base_patch_w
            )
            img_mask = tf.reduce_mean(tf.cast(img_mask, tf.float32), -1)
            patch_ordering = tf.reshape(patch_ordering, [-1])
            valid = patch_ordering >= 0

            # Transpose, to get left-to-right order
            patch_ordering_rh = tf.reshape(patch_ordering,
                                           [tiling[0], tiling[1], image_token_length_h, image_token_length_w])
            patch_ordering_rh = tf.transpose(patch_ordering_rh, [0, 2, 1, 3])
            patch_ordering_rh = tf.reshape(patch_ordering_rh, [-1])

            # The tranpose will screw up which patches are masked, project the
            # new order into sparse structure of `patch_ordering` to fix this
            patch_ordering = tf.tensor_scatter_nd_update(
                patch_ordering,
                tf.where(valid),
                tf.boolean_mask(patch_ordering_rh, patch_ordering_rh >= 0),
                name="patch_order_transpose_Scatter"
            )

            h = tiling[0]*crop_window_patches + (right_margin+left_margin)
            w = tiling[1]*crop_window_patches + (right_margin+left_margin)
            special_token_ids = self.special_token_ids
            per_row = tf.fill(((w+1)//2,),
                              special_token_ids[config.DEFAULT_IMAGE_PATCH_TOKEN],)
            if self.use_col_tokens:
                per_row = tf.concat([per_row, [special_token_ids[config.DEFAULT_IM_COL_TOKEN]]], 0)

            joint = tf.tile(per_row, [(h+1)//2])
            joint = [
                [special_token_ids[config.DEFAULT_IM_START_TOKEN]],
                joint,
                [special_token_ids[config.DEFAULT_IM_END_TOKEN]]
            ]

            if "resize" in mode:
                resized, resized_mask = _resize(image, base_image_input_size)
                resized, resized_mask = _img_to_patches(resized, resized_mask)
                if 'c2' in mode:
                    patches = tf.concat([resized, patches], 0)
                    image_mask = tf.concat([resized_mask, img_mask], 0)
                else:
                    patches = tf.concat([patches, resized], 0)
                    image_mask = tf.concat([img_mask, resized_mask], 0)

                if patch_ordering is not None:
                    if 'c2' in mode:
                        patch_ordering = tf.where(
                            patch_ordering >= 0,
                            patch_ordering + tokens_per_image,
                            -1
                        )
                        patch_ordering = tf.concat([tf.range(0, tokens_per_image), patch_ordering], 0)
                    else:
                        raise ValueError()
                per_row = tf.fill((image_token_length_w,), special_token_ids[config.DEFAULT_IMAGE_PATCH_TOKEN],)
                if self.use_col_tokens:
                    per_row = tf.concat([per_row, [special_token_ids[config.DEFAULT_IM_COL_TOKEN]]], 0)
                extra_tokens = tf.tile(per_row, [image_token_length_h])
                joint = [
                            [special_token_ids[config.DEFAULT_IM_START_TOKEN]],
                            extra_tokens,
                            [special_token_ids[config.DEFAULT_IM_END_TOKEN]],
                        ] + joint

            joint = tf.concat(joint, 0)
            return patches, joint, patch_ordering, img_mask

        elif mode in ["patchify", "patchify-and-resize", "patchify-v2", "patchify-v2-and-resize", "patchify-v2-and-resize-c2"]:
            original_image_w = tf.shape(image, out_type=tf.int32)[0]
            original_image_h = tf.shape(image, out_type=tf.int32)[1]
            assert base_image_input_size[0] == base_image_input_size[1]
            base_patch_size = base_image_input_size[0]
            tiling = select_tiling(original_image_w, original_image_h, base_patch_size, self.max_crops)

            patches, img_mask = _resize(
                image, [tiling[0]*base_patch_size, tiling[1]*base_patch_size])
            patches, img_mask = _img_to_patches(patches, img_mask, tiling[0], tiling[1])
            if 'v2' in mode:
                # Order patches left-to-right not crop-by-crop
                patch_ordering = tf.reshape(
                    tf.range(tokens_per_image*tiling[0]*tiling[1]),
                    [tiling[0], tiling[1], image_token_length_w, image_token_length_h])
                patch_ordering = tf.transpose(patch_ordering, [0, 2, 1, 3])
                patch_ordering = tf.reshape(patch_ordering, (-1, tokens_per_image))
            else:
                patch_ordering = None

            # given image size, determine the number of patch size.
            image_layout_impatch_w = tiling[0]
            image_layout_impatch_h = tiling[1]

            if "resize" in mode:
                extra_image = True
                resized, resized_mask = _resize(image, base_image_input_size)
                resized, resized_mask = _img_to_patches(resized, resized_mask)
                if 'c2' in mode:
                    patches = tf.concat([resized, patches], 0)
                    image_mask = tf.concat([resized_mask, img_mask], 0)
                else:
                    patches = tf.concat([patches, resized], 0)
                    image_mask = tf.concat([img_mask, resized_mask], 0)

                if patch_ordering is not None:
                    if 'c2' in mode:
                        patch_ordering = tf.concat(
                            [tf.range(0, tokens_per_image)[None, :], patch_ordering+tokens_per_image], 0)
                    else:
                        n = tf.shape(patch_ordering)[0]
                        patch_ordering = tf.concat(patch_ordering, [tf.range(n, n+tokens_per_image)[None, :]], 0)
        else:
            raise NotImplementedError(mode)

        special_token_ids = self.special_token_ids

        per_row = tf.fill((image_token_length_w*image_layout_impatch_w,),
                          special_token_ids[config.DEFAULT_IMAGE_PATCH_TOKEN],)
        if self.use_col_tokens:
            per_row = tf.concat([per_row, [special_token_ids[config.DEFAULT_IM_COL_TOKEN]]], 0)

        joint = tf.tile(per_row, [image_token_length_h * image_layout_impatch_h])
        joint = [
            [special_token_ids[config.DEFAULT_IM_START_TOKEN]],
            joint,
            [special_token_ids[config.DEFAULT_IM_END_TOKEN]]
        ]
        if extra_image:
            assert not self.image_padding_mask
            per_row = tf.fill((image_token_length_w,), special_token_ids[config.DEFAULT_IMAGE_PATCH_TOKEN],)
            if self.use_col_tokens:
                per_row = tf.concat([per_row, [special_token_ids[config.DEFAULT_IM_COL_TOKEN]]], 0)
            extra_tokens = tf.tile(per_row, [image_token_length_h])
            if 'c2' in mode:
                joint = [
                            [special_token_ids[config.DEFAULT_IM_START_TOKEN]],
                            extra_tokens,
                            [special_token_ids[config.DEFAULT_IM_END_TOKEN]],
                        ] + joint
            else:
                joint += [
                    [special_token_ids[config.DEFAULT_IM_START_TOKEN]],
                    extra_tokens,
                    [special_token_ids[config.DEFAULT_IM_END_TOKEN]]
                ]
        if self.pad_to is not None:
            n = [tf.shape(x)[0] for x in joint]
            assert len(joint[-1]) == 1
            to_pad = self.pad_to - tf.reduce_sum(tf.stack(n))
            joint = tf.concat(joint[:-1] + [
                tf.zeros(to_pad, dtype=tf.int32) - 1,
                joint[-1]
            ], axis=0)
        else:
            joint = tf.concat(joint, 0)
        return patches, tf.concat(joint, 0), patch_ordering, img_mask

    def build_image_input_idx(self, input_tokens, patch_order, no_image=None):
        """Builds the index used to insert patch features into `input_tokens`"""
        tokens_per_image = self.image_token_length_w * self.image_token_length_h
        if no_image is not None and no_image:
            return tf.zeros((0, tokens_per_image), tf.int32)

        image_input_idx = input_tokens == self.special_token_ids[config.DEFAULT_IMAGE_PATCH_TOKEN]
        image_input_idx = tf.experimental.numpy.nonzero(image_input_idx)[0]
        image_input_idx = tf.cast(image_input_idx, tf.int32)

        if patch_order is not None:
            n_tokens = tf.shape(image_input_idx)[0]
            # Item N should have the value of image_input_index[where(patch_order == n)] if >= 0 else -1
            patch_order = tf.reshape(patch_order, [-1])
            n_patches = tf.shape(patch_order)[0]
            if n_tokens != n_patches:
                # Most complex case where some patches are dropped
                # First invert the valid tokens
                valid = patch_order >= 0
                sorted_patch_ixs = tf.scatter_nd(
                    tf.boolean_mask(patch_order, valid)[:, None],
                    tf.range(tf.reduce_sum(tf.cast(valid, tf.int32)), dtype=tf.int32),
                    [n_tokens],
                    name="valid_order_scatter"
                )

                # Project the inverted mapping into same sparse structure
                tmp = tf.fill(tf.shape(patch_order), -1)
                sorted_patch_ixs_ex = tf.tensor_scatter_nd_update(
                    tmp,
                    tf.where(valid),
                    sorted_patch_ixs,
                    name="order_with_padding_scatter"
                )

                # Do the gather and then re-masked outputs that were masked in `sorted_patch_ixs`
                valid = tf.cast(sorted_patch_ixs_ex >= 0, tf.int32)
                image_input_idx = tf.gather(image_input_idx, sorted_patch_ixs_ex*valid)
                image_input_idx = image_input_idx*valid - 100*(1 - valid)
            else:
                sorted_patch_ixs = tf.scatter_nd(patch_order[:, None], tf.range(n_patches), [n_patches])
                image_input_idx = tf.gather(tf.reshape(image_input_idx, [-1]), sorted_patch_ixs)
            image_input_idx = tf.reshape(image_input_idx, [-1, tokens_per_image])
        return image_input_idx

    def build_multimodel_features(self, tokens, mask, subsegments, images, is_training):
        """Builds input features by pre-processing `images` and modifying `tokens`
        to include image col/pad/start/end tokens instead image placeholder tokens
        """
        image_token_id = self.special_token_ids[config.IMAGE_PROMPT]
        image_idx = tf.experimental.numpy.nonzero(tokens == image_token_id)[0]
        if images is None or tf.shape(images)[0] == 0:
            tf.debugging.assert_equal(image_idx, tf.cast(0, tf.int64),
                                      "Image placeholders in input, but no images given!")
            tokens_per_image = self.image_token_length_w * self.image_token_length_h
            n_pixels = self.image_patch_size ** 2 * 3
            image_num_patch = np.prod(self.image_num_patch)
            crops = tf.zeros((0, image_num_patch, n_pixels), dtype=tf.float32)
            image_idx = tf.zeros((0, tokens_per_image), tf.int32)
            out = dict(
                target_tokens=tokens,
                images=crops,
                image_input_idx=image_idx,
                loss_masks=mask
            )
            if self.image_padding_mask:
                out["image_masks"] = tf.zeros((0, image_num_patch), dtype=tf.float32)
            if subsegments is not None:
                out["subsegment_ids"] = subsegments
            return out
        elif tf.shape(image_idx)[0] == 0 and tf.shape(images)[0] > 0:
            # As a special case, no image prompt means the images are all at the start
            image_idx = tf.zeros([tf.shape(images)[0]], tf.int64) - 1
        else:
            tf.debugging.assert_equal(
                tf.shape(images)[0], tf.shape(image_idx)[0],
                message="Different number of images and image placeholders")

        # Each image will produce a variable number of crops/tokens, so we aggregate things
        # the results tensor arrays and the concat them
        tokens_per_image = self.image_token_length_w * self.image_token_length_h
        n_pixels = self.image_patch_size*self.image_patch_size*3
        n_patches = self.image_num_patch[0]*self.image_num_patch[1]

        n = tf.shape(images)[0]
        all_crops = tf.TensorArray(dtype=tf.float32, size=n, infer_shape=False,
                                   element_shape=[None, n_patches, n_pixels])
        all_image_idx = tf.TensorArray(dtype=tf.int32, size=n, infer_shape=False,
                                       element_shape=[None, tokens_per_image])
        out_tokens = tf.TensorArray(dtype=tf.int32, size=n, infer_shape=False,
                                    element_shape=[None])
        out_masks = tf.TensorArray(dtype=tf.float32, size=n, infer_shape=False,
                                   element_shape=[None])
        if self.image_padding_mask:
            all_crop_masks = tf.TensorArray(dtype=tf.float32, size=n, infer_shape=False,
                                            element_shape=[None, None])
        else:
            # Dummy array to keep tensorflow's control analysis happy
            all_crop_masks = tf.TensorArray(dtype=tf.float32, size=0, infer_shape=False,
                                            element_shape=[None, None])
        if subsegments is not None:
            out_subsegments = tf.TensorArray(dtype=tf.int32, size=n, element_shape=[None])
        else:
            out_subsegments = tf.TensorArray(dtype=tf.int32, size=0, element_shape=[None])

        image_idx = tf.cast(image_idx, tf.int32)
        for ix in range(tf.shape(image_idx)[0]):
            token_ix = image_idx[ix]
            crops, image_tokens, patch_ordering, img_mask = self.image_to_patches_and_tokens(images[ix], is_training)
            patch_idx = self.build_image_input_idx(image_tokens, patch_ordering)

            if token_ix == -1:  # -1 is an image inserted at the very start
                start = 0
                token_ix = 0
                end = 0
            else:
                start = 0 if ix == 0 else image_idx[ix-1] + 1
                end = token_ix + 1

            all_image_idx = all_image_idx.write(ix, patch_idx + token_ix)
            all_crops = all_crops.write(ix, crops)
            image_token_mask = tf.zeros_like(image_tokens, dtype=tf.float32)

            if ix == (tf.shape(images)[0] - 1):
                tokens_part = tf.concat([tokens[start:token_ix], image_tokens, tokens[end:]], 0)
                mask_part = tf.concat([mask[start:token_ix], image_token_mask, mask[end:]], 0)
            else:
                tokens_part = tf.concat([tokens[start:token_ix], image_tokens], 0)
                mask_part = tf.concat([mask[start:token_ix], image_token_mask], 0)

            out_tokens = out_tokens.write(ix, tokens_part)
            out_masks = out_masks.write(ix, mask_part)
            if self.image_padding_mask:
                all_crop_masks = all_crop_masks.write(ix, img_mask)
            if subsegments is not None:
                parts = tf.fill([tf.shape(image_tokens)[0]], subsegments[token_ix])
                if ix == (tf.shape(images)[0] - 1):
                    seg = tf.concat([subsegments[start:token_ix], parts, subsegments[end:]], 0)
                else:
                    seg = tf.concat([subsegments[start:token_ix], parts], 0)
                out_subsegments = out_subsegments.write(ix, seg)

        out = dict(
            target_tokens=out_tokens.concat(),
            images=all_crops.concat(),
            image_input_idx=all_image_idx.concat(),
            loss_masks=out_masks.concat()
        )
        if self.image_padding_mask:
            out["image_masks"] = all_crop_masks.concat()
        if subsegments is not None:
            out["subsegment_ids"] = out_subsegments.concat()
        return out

    def _format_message(self, args):
        message, ix = args
        return self.format_message(message, ix)

    def format_message(self, message, ix):
        """Applies system formatting to ith message from a sequence of messages"""
        # If the image placeholder text is not preceded by space it will not get tokenized
        # correctly by some tokenizers, so double check it here
        assert config.IMAGE_PROMPT == "<|image|>"
        tf.debugging.assert_equal(
            tf.strings.regex_full_match(message, r".*[^ ]<\|image\|>.*"),
            False,
            message="Image token must always be preceded by a space"
        )
        is_user = ix % 2 == 0
        if self.message_format == "none" or self.message_format is None:
            pass
        elif self.message_format == "role":
            if is_user:
                # We put the "System:" prefix here since it doesn't need a loss
                message = tf.strings.join(["User: ", message, " Assistant:"])
        elif self.message_format == "cleanup":
            if is_user:
                # We put the "System:" prefix here since it doesn't need a loss
                message = tf.strings.join(
                    [
                        "[[User]]: Correct the spelling and punctuation mistakes on the following transcript based on what appears in the image.\n\n{before} ",
                        message,
                        "\n[[Assistant]]: {after}"
                    ]
                )
        elif self.message_format == "mistral":
            if is_user:
                message = tf.strings.join(["[INST] ", message, " [/INST]"])
        else:
            raise NotImplementedError(self.message_format)

        # For now assume a space will be used to separate the messages
        if not self.tokenizer.adds_space:
            if ix != 0 or self.always_start_with_space:
                message = tf.strings.join([" ", message])
        # Else space added automatically by the tokenizer

        return message

    def get_multi_message_token_input(self, conversations, text_weights=None):
        """Build inputs for a ragged tensor of conversations, where each row of the tensor,
        is a different conversation"""
        tf.debugging.assert_equal(tf.reduce_any(tf.strings.regex_full_match(
            conversations.values, re.escape(config.IMAGE_PROMPT))), False, "Segmented prompts must start with the image")

        n_conversation = tf.shape(conversations)[0]
        ar = tf.TensorArray(dtype=tf.int32, infer_shape=False, element_shape=[None],
                            size=n_conversation)
        n_messages_per_conversation = conversations.row_lengths()
        for ix in range(n_conversation):
            ar = ar.write(ix, tf.range(n_messages_per_conversation[ix], dtype=tf.int32))
        message_ix = ar.concat()
        messages = tf.map_fn(
            self._format_message, elems=(conversations.values, message_ix), fn_output_signature=tf.string)
        messages = self.tokenizer.encode_tf(messages)

        # Append EOS
        is_response = message_ix % 2 == 1
        is_response_int = tf.cast(is_response, tf.int32)
        eos = tf.RaggedTensor.from_row_lengths(
            tf.fill([tf.reduce_sum(is_response_int)], self.tokenizer.eos_token_id),
            tf.cast(is_response_int, messages.row_splits.dtype)
        )
        messages = tf.concat([messages, eos], axis=1)

        # Build mask over system responses
        mask = tf.ones_like(messages) * tf.cast(tf.expand_dims(is_response, axis=1), tf.int32)
        decoder_loss_weights = tf.cast(mask.values, tf.float32)

        # Build subsegment ids for each conversation
        tokens_per_message = tf.RaggedTensor.from_row_splits(
            row_splits=conversations.row_splits,
            values=messages.row_lengths()
        )
        token_per_conversation = tf.reduce_sum(tokens_per_message, axis=1)
        subsegment_ids = tf.repeat(tf.range(n_conversation, dtype=tf.int32)+1, token_per_conversation)

        image_ix = self.special_token_ids[config.IMAGE_PROMPT]
        messages = tf.concat([[image_ix], messages.values], axis=0)
        decoder_loss_weights = tf.concat([[0], decoder_loss_weights], axis=0)
        subsegment_ids = tf.concat([[10000], subsegment_ids], axis=0)
        return messages, decoder_loss_weights, subsegment_ids

    def get_multi_response_token_input(self, user_prompt, text, text_weights=None):
        """Build tokens for a multi-response-per-image example"""
        # FIXME this could be relaxed to just having the same prefix
        tf.debugging.assert_equal(tf.reduce_any(tf.strings.regex_full_match(
            user_prompt, re.escape(config.IMAGE_PROMPT))), False, "Segmented prompts must start with the image")
        user_prompt = self.format_message(user_prompt, 0)
        vocab = self.tokenizer
        prompts = vocab.encode_tf(user_prompt)
        response = self.format_message(text, 1)
        responses = vocab.encode_tf(response)
        responses = _append_to_innermost_axis(responses, vocab.eos_token_id)
        response_mask = tf.ones_like(responses, dtype=tf.float32)
        if text_weights is not None:
            response_mask *= text_weights
        image_tokens = tf.constant([self.special_token_ids[config.IMAGE_PROMPT]])

        if len(responses.shape) == 3:
            # Tricky case where we have multiple questions, each of which has multiple answers
            assert len(prompts.shape) == 2

            # Also shift the last tokens to the response segment since that tokens will
            # have multiple possible target tokens to predict
            last_prompt_tokens = prompts[:, -1:]
            last_prompt_tokens = tf.repeat(last_prompt_tokens, responses.row_lengths())
            last_prompt_tokens = tf.RaggedTensor.from_row_splits(
                values=tf.RaggedTensor.from_row_lengths(
                    values=last_prompt_tokens,
                    row_lengths=tf.ones_like(last_prompt_tokens, dtype=responses.row_splits.dtype)
                ),
                row_splits=responses.row_splits
            )
            responses = tf.concat([last_prompt_tokens,  responses], 2)
            prompts = prompts[:, :-1]

            shared_prefix = image_tokens
            segmented_suffix = tf.concat([tf.expand_dims(prompts, 1), responses], 1)
            targets = tf.concat([shared_prefix, segmented_suffix.values.values], 0)

            segmented_mask = tf.concat([
                tf.zeros_like(tf.expand_dims(prompts, 1), dtype=tf.float32),
                tf.concat([
                    tf.zeros_like(last_prompt_tokens, dtype=tf.float32),
                    response_mask
                ], 2)
            ], 1).values.values
            decoder_loss_weights = tf.concat(
                [tf.zeros_like(shared_prefix, dtype=tf.float32), segmented_mask], 0)

            text_segment_ids = get_3d_subsegments(segmented_suffix)
            subsegment_ids = tf.concat([
                tf.zeros_like(shared_prefix) + tf.reduce_max(text_segment_ids)+1,
                text_segment_ids], 0)
            subsegment_ids = tf.cast(subsegment_ids, tf.int32)
        else:
            if len(prompts.shape) == 1:
                # One prompt for all responses, we use the last token of the prompt as the
                # first token of each response segment since there will be multiple targets
                # for that token, the remaining targets are part of the prefix
                shared_prefix = tf.concat([image_tokens, prompts[:-1]], 0)
                prompts = prompts[-1:]
                prompts = tf.tile(tf.expand_dims(prompts, axis=0), [tf.shape(text)[0], 1])
            else:
                shared_prefix = image_tokens

            # Separate prompt for each response
            segmented_suffix = tf.concat([prompts, responses], 1)
            segmented_mask = tf.concat([tf.zeros_like(prompts, dtype=tf.float32), response_mask], 1).values

            targets = tf.concat([shared_prefix, segmented_suffix.values], 0)
            decoder_loss_weights = tf.concat(
                [tf.zeros_like(shared_prefix, dtype=tf.float32), segmented_mask], 0)
            subsegments = tf.ragged.row_splits_to_segment_ids(segmented_suffix.row_splits) + 1
            subsegment_ids = tf.concat([tf.zeros_like(shared_prefix)+10000,
                                        tf.cast(subsegments, tf.int32)], 0)
        return targets, decoder_loss_weights, subsegment_ids

    def get_tokens_input(self, messages, for_inference=False, text_weights=None):
        """Gets the token input for an example, using image placeholder tokens to
        indicate where images features should be inserted

        inputs
        messages: List or tensor users/system text messages, can have image placeholder tokens
        for_inference: bool, if true truncate the messages if it is a system message
        text_weights: Weights per a system message

        returns
        tokens: [n_tokens] tf.int32 token inputs with image placeholder tokens
        loss_mask: [n_tokens] tf.float32 token weights for loss
        subsegment: [n_tokens] tf.int32 or None, subsegment ids used to build more complex
                               attention masks if needed
        """
        if isinstance(messages, tf.RaggedTensor):
            assert not for_inference, "Cannot have multiple target messages for inference"
            return self.get_multi_message_token_input(messages, text_weights)
        elif len(tf.shape(messages[-1])) > 0:
            assert not for_inference, "Cannot have multiple target messages for inference"
            assert len(messages) == 2
            prompt = messages[0]
            response = messages[1]
            return self.get_multi_response_token_input(prompt, response, text_weights)
        else:
            messages = tf.convert_to_tensor(messages)
            if for_inference:
                if tf.shape(messages) % 2 == 0:
                    # Remove the last message since the model should predict it
                    messages = messages[:-1]

        # Apply system formatting
        ix = tf.range(tf.shape(messages)[0])
        is_response = ix % 2 == 1
        messages = tf.map_fn(
            self._format_message, elems=(messages, ix), fn_output_signature=tf.string)

        # Tokenize
        messages = self.tokenizer.encode_tf(messages)

        # Add EOS to system messages
        is_response_int = tf.cast(is_response, tf.int32)
        eos = tf.RaggedTensor.from_row_lengths(
            tf.fill([tf.reduce_sum(is_response_int)], self.tokenizer.eos_token_id),
            tf.cast(is_response_int, messages.row_splits.dtype)
        )
        messages = tf.concat([messages, eos], axis=1)
        targets = messages.values

        # Build mask over system responses
        mask = tf.ones_like(messages) * tf.cast(tf.expand_dims(is_response, axis=1), tf.int32)
        decoder_loss_weights = tf.cast(mask.values, tf.float32)
        if text_weights is not None:
            decoder_loss_weights = decoder_loss_weights * text_weights
        return messages.values, decoder_loss_weights, None

    def preprocess(self, image, input_text, is_training=False,
                   seq_len=None, pad_images=1, style=None, for_inference=True):
        """Get input tensors for the given image/text data

        image: [h, w, 3] numpy uint8 array of image pixels
        input_text: string input text, a list of text for a multi-turn conversation or dictionary
                    of inputs to use to build the prompt from a template
        is_training: allow training-time preprocessing (e.g., image augmentation)
        seq_len: pad input tokens to `seq_len`
        pad_images: pad input images to `self.get_max_total_crops()`
        style: Style to use for prompt templating
        """
        if image is not None and len(tf.shape(image)) == 3:
            image = tf.expand_dims(image, axis=0)

        messages = self.get_messages(input_text, style, is_training, for_inference=for_inference, user_prompt_seed=None, system_prompt_seed=None)
        targets, loss_masks, subsegments = self.get_tokens_input(messages, for_inference=for_inference)
        batch = self.build_multimodel_features(
            targets, loss_masks, subsegments, image, is_training)

        # Optionally padding to get constant sized arrays
        if pad_images:
            max_crops = self.get_max_total_crops() * pad_images
            image = batch["images"]
            n = max_crops - tf.shape(batch["images"])[0]
            batch["images"] = tf.pad(image, [[0, n], [0, 0], [0, 0]], constant_values=-1)
            if self.image_padding_mask:
                m = max_crops - tf.shape(batch["image_masks"])[0]
                batch["image_masks"] = tf.pad(batch["image_masks"], [[0, m], [0, 0]], constant_values=-1)
            batch["image_input_idx"] = tf.pad(batch["image_input_idx"], [[0, n], [0, 0]], constant_values=-1)

        if seq_len is not None:
            targets = batch["target_tokens"]
            if seq_len < len(targets):
                raise ValueError("Sequence length too short")
            n = seq_len - len(targets)
            batch["target_tokens"] = tf.pad(targets, [[0, n]], constant_values=-1)
            batch["loss_masks"] = tf.pad(batch["loss_masks"], [[0, n]], constant_values=-1)

        batch = self.get_post_mixing_preprocessor(pack=False)._convert_example(batch)
        return batch

    def get_user_prompt(self, style, example, is_training=True, for_inference=False, seed=None):
        """Build a list of strings of what a user might type in to the model for the given example,
        and its responses, by applying a prompt template to the fields in `example`

        Can return multiple strings for one message for multi-response examples
        """
        if "style" in example:
            style = example["style"]

        if "prompt" in example:
            # Examples have a complete user prompt pre-specified, usually for eval sets
            prompt = example["prompt"]

        elif self.prompt_templates == "none":
            # Bare-bone prompt with not templating of instructions
            if "prompt" in example:
                prompt = example["prompt"]
            elif "refexp" in example:
                prompt = example["refexp"]
            elif "question" in example and "options" in example:
                prompt = tf.strings.join([example["question"], "\n", example["options"], "\n"])
            elif "question" in example:
                prompt = example["question"]
            else:
                prompt = ""

        elif self.prompt_templates == "uber_model":
            if not isinstance(style, str):
                tf.debugging.assert_equal(tf.logical_or(
                    style == "ai2_diagram_no_letter",
                    style == "ai2_diagram",
                ), True)
                prompt = tf.strings.join([example["question"], "\n", example["options"], "\n"])
            else:
                # We template long captions and pointing since they are "demo" tasks, and use
                # plain text for everything else
                if style == "long_caption":
                    prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1["long_caption"], example, seed)
                elif style == "pointing":
                    prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1["pointing"], example, seed)
                elif style == "point_count":
                    prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1["point_count"], example, seed)
                elif "prompt" in example:
                    prompt = example["prompt"]
                elif "refexp" in example:
                    prompt = example["refexp"]
                elif "question" in example and "options" in example:
                    prompt = tf.strings.join([example["question"], "\n", example["options"], "\n"])
                elif "question" in example:
                    prompt = example["question"]
                else:
                    prompt = ""

        elif self.prompt_templates == "uber_model_pointing":
            if style == "long_caption":
                long_captions = GENERAL_PROMPTS_V1["long_caption_no_pointing"]
                prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1["long_caption"], example, seed)
            elif style == "pointing":
                prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1["pointing"], example, seed)
            elif style in [
                "scifi_charts_explanation",
                "scifi_table_explanation",
                "scifi_document_explanation",
                "scifi_diagram_explanation",
                "user_qa",
                "long_caption",
            ]:
                raise NotImplementedError()
                if style == "long_caption":
                    prompts = GENERAL_PROMPTS_V1["long_caption"]
                elif "prompt" in example:
                    prompts = tf.expand_dims(example["prompt"], axis=0)
                else:
                    prompts = tf.expand_dims(example["question"], axis=0)
                suffixes = []
                for suffix in GENERAL_PROMPTS_V1["no_pointing_suffix"]:
                    if not suffix[0].isspace():
                        suffix = " " + suffix
                    suffixes.append(suffix)
                no_point_prompts = tf.reshape(tf.strings.join([
                    tf.tile(tf.expand_dims(suffixes, 1), [1, tf.shape(prompts)[1]]),
                    tf.tile(prompts, [len(suffixes), 1]),
                ]), [-1])
                # prefixes = []
                # for prefix in GENERAL_PROMPTS_V1["no_pointing_prefix"]:
                #     if not prefix[0].isspace():
                #         prefix = prefix + " "
                #     prefixes.append(prompts + prefix)
                prompt = apply_keyword_prompt(no_point_prompts, example, seed, keywords=[])
            elif "prompt" in example:
                prompt = example["prompt"]
            elif "refexp" in example:
                prompt = example["refexp"]
            elif "question" in example and "options" in example:
                prompt = tf.strings.join([example["question"], "\n", example["options"], "\n"])
            elif "question" in example:
                prompt = example["question"]
            else:
                prompt = ""

        elif self.prompt_templates == "general_instructions_v1":
            if isinstance(style, str):
                prompt = apply_keyword_prompt(GENERAL_PROMPTS_V1[STYLE_TO_GENERAL_PROMPT[style]], example, seed)
            elif isinstance(style, list):
                # This ia bit of hack to allow apply prompts to joint caption/transcript data
                # FIXME ideally we can apply the templating to multiple styles more generally
                def _apply(_style, ix):
                    tmp = dict(example)
                    # prevent apply_keyword_prompt for generating multiple templates
                    tmp["text"] = tmp["text"][0]
                    if _style == "long_caption":
                        return apply_keyword_prompt(GENERAL_PROMPTS_V1["long_caption"], tmp, seed)
                    elif _style == "transcript":
                        return apply_keyword_prompt(GENERAL_PROMPTS_V1["transcript"], tmp, seed)
                    else:
                        raise NotImplementedError(_style)
                prompt = [_apply(x, ix) for ix, x in enumerate(style)]
            else:
                raise NotImplementedError()

        elif self.prompt_templates == "zero_shot_v1":
            assert style is not None
            if not isinstance(style, str):
                # FIXME can we handle tensor style's in a better way?
                if style == "ai2_diagram":
                    prompt = "Question: {question}\nAnswer with correct answer option letter only\nOptions: {options}\nAnswer:"
                    prompt = apply_keyword_prompt([prompt], example, seed)
                elif style == "ai2_diagram_no_letter":
                    prompt = "Question: {question}\nAnswer with correct answer option only\nOptions: {options}\nAnswer:"
                    prompt = apply_keyword_prompt([prompt], example, seed)
                else:
                    prompt = ""
                tf.debugging.assert_equal(prompt != "", True)
            else:
                general_style = STYLE_TO_GENERAL_PROMPT[style]
                if general_style == "short_answer":
                    prompt = apply_keyword_prompt(["Question: {question} Answer with as few words as possible. Answer:"], example, seed)
                elif general_style == "multiple_choice":
                    prompt = apply_keyword_prompt(["Question: {question}\nAnswer with correct answer option letter only\nOptions: {options}\nAnswer:"], example, seed)
                elif general_style == "count_bench":
                    prompt = apply_keyword_prompt(["Question: How many {object} are there?\nRespond with only a number.\nAnswer:"], example, seed)
                else:
                    raise NotImplementedError(general_style)

        elif self.prompt_templates == "zero_shot_v2":
            assert style is not None

            if self.prompt_override:
                prompt = apply_keyword_prompt([self.prompt_override], example, seed)
            elif not isinstance(style, str):
                if style == "ai2_diagram":
                    prompt = "{question} Answer with correct answer option letter only. Options: {options}"
                    prompt = apply_keyword_prompt([prompt], example, seed)
                elif style == "ai2_diagram_no_letter":
                    prompt = "{question} Answer with correct answer option only. Options: {options}"
                    prompt = apply_keyword_prompt([prompt], example, seed)
                else:
                    prompt = ""
                tf.debugging.assert_equal(prompt != "", True)
            else:
                if style in ["vqa2", "gqa", "tally_qa", "okvqa", "a_okvqa_da"]:
                    prompt = "Answer with a single word. {question}"
                elif style in ["text_vqa", "doc_qa", "info_qa", "chart_qa", "st_qa", "ocr_vqa", "dv_qa", "tabwmp_da", "figure_qa", "figure_qa_zero_shot", "plot_qa"]:
                    prompt = "{question}\nRespond as concisely as possible, do not output anything other than the answer."
                elif STYLE_TO_GENERAL_PROMPT[style] == "multiple_choice":
                    prompt = "{question} Answer with correct answer option letter only. Options: {options}"
                elif STYLE_TO_GENERAL_PROMPT[style] == "short_answer":
                    prompt = "{question} Answer with as few words as possible."
                elif style == "vtabfact":
                    prompt = "{question}"
                elif style == "count_bench":
                    prompt = "How many {object} are there?\nRespond with only a number."
                else:
                    raise NotImplementedError(style)
                prompt = apply_keyword_prompt([prompt], example, seed)
        else:
            raise NotImplementedError(self.prompt_templates)

        if for_inference:
            return [prompt]
        else:
            return [prompt, example["text"]]

    def get_system_prompt(self, style, example, for_inference,
                          messages, seed=None):
        if isinstance(style, str) and style == "count_bench":
            style = "ok_vqa"

        if self.system_prompt == "style":
            if isinstance(style, str):
                prefix = style + ":"
            else:
                prefix = tf.strings.join([style, ":"])

        elif self.system_prompt == "demo_or_style":
            if isinstance(style, str):
                if style == "android_control" or style == "demo":
                    # android is a special case since I hacked in prefix in the preprocessor
                    prefix = ""
                elif style in ["scifi_demo", "synthetic_qa"] or style in DEMO_STYLES:
                    if style == "scifi_demo":
                        p_no_prompt = 0.2
                    elif style == "synthetic_qa":
                        p_no_prompt = 0.25
                    else:
                        p_no_prompt = 0.9
                    if len(tf.shape(messages)) > 1:
                        n_messages = tf.shape(messages)[1]
                        style = tf.tile(tf.expand_dims(style, axis=0), [n_messages])
                        r = tf.random.stateless_uniform([n_messages], seed, 0, 1)
                    else:
                        r = tf.random.stateless_uniform((), seed, 0, 1)
                    prefix = tf.where(r < p_no_prompt, "", tf.strings.join([style + ":"]))
                else:
                    prefix = style + ":"
            else:
                if tf.reduce_any(style == tf.constant(DEMO_STYLES + ["scifi_demo", "android_control", "demo"])):
                    prefix = ""
                else:
                    prefix = tf.strings.join([style, ":"])

        elif self.system_prompt in ["long_caption_length_hint", "style_long_caption_length_hint"]:
            if seed is not None:
                raise NotImplementedError("Determinism")
            std = 25
            use_hint = tf.logical_or(
                tf.equal(style, "long_caption"), tf.equal(style, "transcript"))
            if self.system_prompt == "style_long_caption_length_hint":
                default = tf.strings.join([style, ": "])
            else:
                default = ""
            if for_inference:
                assert len(tf.shape(use_hint)) == 0
                if self.default_inference_len and use_hint:
                    prefix = tf.strings.join([style, " ", str(self.default_inference_len), ": "])
                else:
                    prefix = default
            else:
                std = 25
                n = tf.strings.length(messages[-1])
                n += tf.cast(tf.random.normal(n.shape)*std, tf.int32)
                hint = tf.strings.join([style, " ", tf.strings.as_string(n//15), ": "])
                use_hint = tf.logical_and(use_hint, tf.random.uniform(tf.shape(hint)) > 0.1)
                prefix = tf.where(use_hint, hint, default)

        elif for_inference and self.system_prompt in ["style_and_length", "style_and_length_v2"]:
            v2 = self.system_prompt == "style_and_length_v2"
            if example.get("length_cond") is not None:
                # Examples have individual length conditioning
                n = tf.strings.as_string(example["length_cond"])
            else:
                inference_len = self.default_inference_len
                n = None if inference_len is None else str(inference_len)
                logging.warning(f"eval len: {n}")
            if n is not None and tf.strings.length(n) > 0:  # allow empty string to signal unconditioned
                prefix = tf.strings.join([style, " ", n, ":"])
            else:
                prefix = tf.strings.join([style, ":" if v2 else " :"])
        elif self.system_prompt in ["style_and_length", "style_and_length_v2"]:
            v2 = self.system_prompt == "style_and_length_v2"
            std = 25
            logging.info(f"style prompt std={std}, percent=10")
            if seed is not None:
                seeds = tf.random.split(seed)
                p = tf.random.stateless_uniform((), seed=seeds[0])
            else:
                p = tf.random.uniform(())
            if p > 0.10:
                n = tf.strings.length(messages[-1])
                if seed is not None:
                    n += tf.cast(tf.random.stateless_normal(n.shape, seed=seeds[1])*std, tf.int32)
                else:
                    n += tf.cast(tf.random.normal(n.shape)*std, tf.int32)
                n = tf.strings.as_string(n//15)
                prefix = tf.strings.join([style, " ", n, ":"])
            else:
                prefix = tf.strings.join([style, ":" if v2 else " :"])
        else:
            raise NotImplementedError(self.system_prompt)

        return prefix

    def preprend_system_prompt(self, style, example, for_inference, messages, seed=None):
        prefix = self.get_system_prompt(style, example, for_inference, messages, seed=seed)
        separator = tf.where(tf.logical_and(
            tf.strings.length(prefix) > 0, tf.strings.length(messages[0]) > 0), " ", "")
        with_system_prompt = tf.strings.join([prefix, separator, messages[0]])
        if isinstance(messages, list):
            messages = [with_system_prompt] + messages[1:]
        else:
            messages = tf.concat([tf.expand_dims(with_system_prompt, 0), messages[1:]], axis=0)
        return messages

    def get_messages(self, ex, style, is_training, for_inference, user_prompt_seed, system_prompt_seed):
        if isinstance(ex, list):
            messages = ex
        elif isinstance(ex, str):
            messages = [ex]
        elif "messages" in ex:
            messages = ex["messages"]
        else:
            # Apply a prompt template
            messages = self.get_user_prompt(style, ex, is_training, for_inference=for_inference, seed=user_prompt_seed)

        # Maybe add a system prompt. The system prompt gets concatenated with the first user input
        if self.system_prompt and self.system_prompt != "none":
            if isinstance(ex, dict):
                style = ex.get("style", style)

            if isinstance(messages, tf.RaggedTensor):
                n = tf.shape(messages)[0]
                message_arr = tf.TensorArray(dtype=tf.string, size=n, element_shape=(None,))
                seeds = tf.random.split(system_prompt_seed, n)
                for i in range(n):
                    message_arr = message_arr.write(i, self.preprend_system_prompt(style, None, for_inference, messages[i], seed=seeds[i]))
                messages = tf.RaggedTensor.from_row_splits(
                    values=message_arr.concat(), row_splits=messages.row_splits)
            else:
                messages = self.preprend_system_prompt(style, ex, for_inference, messages, seed=system_prompt_seed)

        return messages

    def get_preprocessor(self, is_training, for_inference, style=None, include_metadata=None):
        """Build a preprocessing function that can be applied ot a tf.data.Dataset"""
        vocab = self.tokenizer
        include_response = not for_inference
        if include_metadata is None:
            include_metadata = for_inference

        @seqio.map_over_dataset(num_seeds=2)
        def to_inputs_and_targets(ex, seeds):
            if "unconditioned" in ex:
                raise NotImplementedError()
            if "image" not in ex:
                image = None
            elif ex['image'].dtype == tf.string:
                image = tf.image.decode_image(ex['image'], channels=3, expand_animations=False)
            else:
                image = ex['image']
            raw_image = image
            if image is not None and len(tf.shape(image)) == 3:
                image = tf.expand_dims(image, axis=0)

            unconditioned = self.unconditioned
            if unconditioned and isinstance(unconditioned, float):
                assert image is not None
                if is_training and tf.random.uniform((), 0, 1, dtype=tf.float32) < unconditioned:
                    image = image[:0]
            elif unconditioned:
                image = None

            messages = self.get_messages(ex, style, is_training, for_inference, seeds[0], seeds[1])
            targets, loss_masks, subsegments = self.get_tokens_input(
                messages, for_inference, ex.get("text_weights"))
            # if "scifi" in style and style.endswith("_explanation"):
            #     logging.warning(f"No loss on EOS for {style}")
            #     loss_masks = tf.where(targets == self.tokenizer.eos_token_id, tf.zeros_like(loss_masks), loss_masks)
            out = self.build_multimodel_features(targets, loss_masks, subsegments, image, is_training)

            if include_metadata:
                # FIXME remove these special cases
                if "text" in ex:
                    if len(ex["text"].shape) > 0:
                        # FIXME can this be variable lengths after all?
                        out["metadata/captions"] = tf.strings.reduce_join(
                            tf.strings.regex_replace(ex['text'], "\\s+", " "),
                            separator="\n"
                        )
                    else:
                        out["metadata/captions"] = ex["text"]

                if "image_url" in ex:
                    out["metadata/image_url"] = ex["image_url"]
                elif "url" in ex:
                    out["metadata/image_url"] = ex["url"]
                if "image_id" in ex:
                    out["metadata/image_id"] = ex["image_id"]
                for k, v in ex.items():
                    if k.startswith("metadata"):
                        out[k] = v
                if raw_image is not None and "metadata/image_size" not in out:
                    img_h = tf.shape(raw_image)[0]
                    img_w = tf.shape(raw_image)[1]
                    out["metadata/image_size"] = [img_w, img_h]
                if "metadata/image_url" not in out and raw_image is not None:
                    if len(ex["image"].shape) < 4:
                        # For visualizations FIXME can we make this variable length
                        out["metadata/image"] = tf.io.encode_jpeg(
                            tf.image.convert_image_dtype(raw_image, tf.uint8))
            return out
        return to_inputs_and_targets

    def get_post_mixing_preprocessor(self, pack=False):
        """Build a feature conversion function that can be applied ot a tf.data.Dataset

        This function applies a second stage of pre-processing, but unlike `self.get_preprocessor`
        this stage can be applied after mixing tf.data.Datasets into a mixture
        """
        return MultiModalLMFeatureConverter(
            loss_token_weighting=self.loss_token_weighting,
            bos_id=self.tokenizer.bos_token_id,
            fix_image_input_idx=self.fix_image_input_idx,
            pack=pack,
            special_tokens=list(self.special_token_ids.values()),
        )


class MultiModalLMFeatureConverter:

    def __init__(
        self, pack: bool = False, loss_token_weighting: str=None, bos_id: int = 1,
        special_tokens=None, fix_image_input_idx=2
    ):
        self.pack = pack
        self.bos_id = bos_id
        self.fix_image_input_idx = fix_image_input_idx
        self.special_tokens = tf.constant(special_tokens) if special_tokens else None
        self.loss_token_weighting = loss_token_weighting

    def _convert_example(
        self, features: Mapping[str, tf.Tensor]
    ) -> Mapping[str, tf.Tensor]:
        """Convert an LM example into an example with model features."""
        # targets_segment_id is present only for a packed dataset.
        decoder_input_tokens = make_autoregressive_inputs(
            features["target_tokens"],
            sequence_id=features.get("targets_segment_ids", None),
            bos_id=self.bos_id,
        )

        tf.assert_equal(
            True,
            tf.reduce_all(decoder_input_tokens[-1] != self.special_tokens),
            message="An input ends with an image special token",
        )

        image_input_idx = features["image_input_idx"]
        if self.fix_image_input_idx == 2:
            # plus one sine we have added BOS to the inputs
            image_input_idx = tf.where(image_input_idx < 0,  image_input_idx, image_input_idx + 1)
        else:
            # Some old models trained like this, sometimes image_input_idx will go from -1 -> 0 didn't
            # effect performance but keep this code path for backwards compatiblity with those checkpoints
            image_input_idx = image_input_idx + 1

        d = {
            "target_tokens": features["target_tokens"],
            "input_tokens": decoder_input_tokens,
            "loss_masks": features["loss_masks"],
            "images": features["images"],
            "image_input_idx": image_input_idx
        }
        if "image_masks" in features:
            d["image_masks"] = features["image_masks"]

        has_custom_text_weight = features.get("has_custom_loss_weight", False)

        if "subsegment_ids" in features:
            subsegment_ids = make_autoregressive_inputs(
                features["subsegment_ids"],
                sequence_id=features.get("targets_segment_ids", None),
                bos_id=features["subsegment_ids"][0],
            )

            # Subsegment have a position based on the sum of previous positions they can attend to
            position_ids = tf.zeros_like(subsegment_ids)
            unique_segments = tf.unique(subsegment_ids)[0]
            for i in unique_segments:
                segment_position_ids = tf.cumsum(tf.cast(subsegment_ids >= i, tf.int32)) - 1
                position_ids = tf.where(subsegment_ids == i, segment_position_ids, position_ids)

            # Apply loss weighting, this is done here so it occurs after truncation
            if has_custom_text_weight:
                pass
            elif self.loss_token_weighting in ["subsegments", "root_subsegments"]:
                n_loss_segments = tf.shape(tf.unique(tf.boolean_mask(subsegment_ids, d["loss_masks"] > 0))[0])[0]
                n_loss_segments = tf.maximum(tf.cast(n_loss_segments, tf.float32), 1)
                weight = 1/n_loss_segments if self.loss_token_weighting == "subsegments" else tf.math.rsqrt(n_loss_segments)
                d["loss_masks"] = tf.where(d["loss_masks"] > 0, d["loss_masks"]*weight, d["loss_masks"])
            elif self.loss_token_weighting is not None:
                raise NotImplementedError(self.loss_token_weighting)

            d["subsegment_ids"] = subsegment_ids
            d["position_ids"] = position_ids
        else:
            if self.loss_token_weighting not in [None, "subsegments", "root_subsegments"] and not has_custom_text_weight:
                raise NotImplementedError(self.loss_token_weighting)
        if self.pack:
            d["decoder_segment_ids"] = features["targets_segment_ids"]
            d["decoder_positions"] = features["targets_positions"]

        for k in features:
            if k.startswith("metadata/"):
                d[k] = features[k]
        return d

    def _pack_or_pad(self, ds, task_feature_lengths):
        if self.pack:
            raise NotImplementedError()
        else:
            return trim_and_pad_dataset(ds, task_feature_lengths)

    def __call__(self, ds: tf.data.Dataset, task_feature_lengths: Mapping[str, int]) -> tf.data.Dataset:
        """Convert the dataset to be fed to a language model."""
        task_feature_lengths = dict(task_feature_lengths)

        if "images" in ds.element_spec and "images" in task_feature_lengths:
            # Images should never be truncated
            ds = assert_not_truncated(ds, ["images", "image_input_idx"], task_feature_lengths["images"])

        if any(x.startswith("metadata/") for x in ds.element_spec):
            # Metadata indicates the dataset is being used for inference, inference datasets
            # should not be truncated
            ds = assert_not_truncated(ds, ["target_tokens"], task_feature_lengths["target_tokens"])

        if "image_masks" in ds.element_spec and "images" in task_feature_lengths:
            task_feature_lengths["image_masks"] = task_feature_lengths["images"]
        if "subsegment_ids" in ds.element_spec and "target_tokens" in task_feature_lengths:
            task_feature_lengths["subsegment_ids"] = task_feature_lengths["target_tokens"]
        if "loss_masks" not in task_feature_lengths and "target_tokens" in task_feature_lengths:
            task_feature_lengths["loss_masks"] = task_feature_lengths["target_tokens"]
        ds = self._pack_or_pad(ds, task_feature_lengths)

        return ds.map(
            self._convert_example, num_parallel_calls=tf.data.experimental.AUTOTUNE)