File size: 17,538 Bytes
d13896f
 
 
 
3f119eb
d13896f
3f119eb
d13896f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f119eb
d13896f
 
 
 
 
3f119eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13896f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f119eb
d13896f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f119eb
d13896f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f119eb
d13896f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f119eb
 
d13896f
 
 
 
 
 
 
3f119eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
from __future__ import annotations

import logging
from dataclasses import asdict, dataclass, field
from enum import Enum
from glob import glob
from os import PathLike
from pathlib import Path
from typing import (
    Any,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    Type,
    TypeVar,
    Union,
    cast,
)

from transformers import PretrainedConfig


C = TypeVar("C", bound="BaseConfig")
D = TypeVar("D", bound="DictConfig|ListConfig")


PathOrStr = Union[str, PathLike]


class StrEnum(str, Enum):
    """
    This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
    We include this here for compatibility with older version of Python.
    """

    def __str__(self) -> str:
        return self.value

    def __repr__(self) -> str:
        return f"'{str(self)}'"



class AttentionType(StrEnum):
    sdpa = "sdpa"
    direct = "direct"
    flash = "flash"


class LayerNormType(StrEnum):
    default = "default"
    """
    The default LayerNorm implementation, equivalent to PyTorch's built-in version.
    """

    low_precision = "low_precision"
    """
    A low-precision version of the default LayerNorm.
    """

    rms = "rms"
    """
    An RMSNorm implementation. When using ``torch.compile`` this is
    probably the fastest implementation.
    """

    gemma_rms = "gemma_rms"
    """
    A GemmaRMSNorm implementation. When using ``torch.compile`` this is
    probably the fastest implementation.
    """


class ActivationType(StrEnum):
    quick_gelu = "quick_gelu"
    gelu = "gelu"
    gelu_tanh = "gelu_tanh"
    relu = "relu"
    silu = "silu"
    llama_geglu = "llama_geglu"
    llama_geglu_tanh = "llama_geglu_tanh"
    llama_swiglu = "llama_swiglu"
    swiglu = "swiglu"


class BlockType(StrEnum):
    sequential = "sequential"

    llama = "llama"
    """
    A block similar to the sequential block with slightly different
    implementations of operations like attention to imitate the behavior of Llama.
    """

    gemma = "gemma"
    """
    A block similar to the sequential block with slightly different
    implementations of operations like attention to imitate the behavior of Gemma.
    """

    moe = "moe"


class InitFnType(StrEnum):
    mitchell = "mitchell"
    """
    The strategy suggested to us by Mitchell Wortsman from UW.
    This uses a truncated normal distribution with an adaptive standard deviation that depends
    on the size of the weights as well as the depth of the layer.
    """

    normal = "normal"
    """
    All weights are initialized from the same normal distribution.
    """

    kaiming_normal = "kaiming_normal"
    """
    All weights are initialized with the Kaiming method from a normal distribution.
    Note this currently won't work with FSDP.
    """

    fan_in = "fan_in"
    """
    "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
    is the input dimensionality of the kernel.
    """

    full_megatron = "full_megatron"
    """
    This is what metaseq calls "full megatron init". It is the init used for Llama 2.
    """


class VisionBackboneType(StrEnum):
    openai = "openai"


class ImagePaddingEmbed(StrEnum):
    pad_and_partial_pad = "pad_and_partial_pad"
    pad_embed = "pad_embed"
    regress = "regress"


class ImagePooling2DType(StrEnum):
    attention = "attention"
    attention_meanq = "attention-meanq"
    attention_2wide = "attention_2wide"
    attention_v2 = "attention-v2"
    none = "none"
    stack = "stack"


class ImageProjectType(StrEnum):
    mlp = "mlp"
    mlpx2 = "2mlp"
    linear = "linear"


@dataclass
class VisionBackboneConfig:
    image_model_type: VisionBackboneType = VisionBackboneType.openai
    image_default_input_size: Tuple[int, int] = (336, 336)
    image_patch_size: int = 14
    image_pos_patch_size: int = 14
    image_emb_dim: int = 1024
    image_num_heads: int = 16
    image_num_key_value_heads: int = 16
    image_num_layers: int = 24
    image_head_dim: int = 64
    image_mlp_dim: int = 4096
    image_mlp_activations: ActivationType = ActivationType.gelu
    image_dropout_rate: float = 0.0
    image_num_pos: int = 577
    image_norm_eps: float = 1e-5
    attention_dropout: float = 0.0
    residual_dropout: float = 0.0
    initializer_range: float = 0.02
    fsdp_wrap: bool = False

    # how to preprocess imagse for this ViT
    resize_mode: str = "default"

    def __post_init__(self):
        self.image_default_input_size = tuple(self.image_default_input_size)  # type: ignore[assignment]

    @property
    def image_num_patch(self):
        h, w = self.image_default_input_size
        return h // self.image_patch_size, w // self.image_patch_size


class TruncationDirection(StrEnum):
    right = "right"
    left = "left"


@dataclass
class ModelConfig:
    """
    OLMo (model) configuration.
    """

    # Note that the defaults for these attributes are equivalent to the base GPT2 model.

    d_model: int = 768
    """
    The hidden size of the model.
    """

    n_heads: int = 12
    """
    The number of self-attention heads.
    """

    n_kv_heads: Optional[int] = None
    """
    The number of heads to use for keys and values. Defaults to `n_heads`.
    Set this to ``None`` or ``n_heads`` for normal multi-head attention.
    Set this to 1 for multi-query attention.
    Set it to some in-between value for Llama2-style grouped query attention.
    """

    qkv_bias: bool = False  # qwen models use bias in kvq layers

    clip_qkv: Optional[float] = None
    """
    Clip QKV to this value when set.
    """

    n_layers: int = 12
    """
    The number of layers/blocks.
    """

    mlp_ratio: int = 4
    """
    The ratio of the inner MLP dimensionality to ``d_model``.
    This is only used when ``mlp_hidden_size`` is not set.
    """

    mlp_hidden_size: Optional[int] = None
    """
    Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
    """

    activation_type: ActivationType = ActivationType.swiglu
    """
    The activation function to use within the MLP layers.
    """

    block_type: BlockType = BlockType.sequential
    """
    The transformer block implementation.
    """

    block_group_size: int = 1
    """
    The number of blocks to group together into a single parent block.
    This has no affect on the number of parameters in the model and is only used to wrap groups
    of blocks together with a single FSDP wrapper during training.
    """

    alibi: bool = False
    """
    If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
    """

    alibi_bias_max: float = 8.0
    """
    Maximum absolute value of ALiBi bias.
    """

    rope: bool = False
    """
    Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
    """

    rope_full_precision: bool = True
    """
    If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
    apply RoPE at the precision of the input.
    """

    rope_theta: float = 10000.

    rope_impl: str = "cockatoo"

    vit_load_path: Optional[str] = None
    """
    Use this to load the vit model.
    """

    llm_load_path: Optional[str] = None
    """
    Use this to partially load the llm transformer.
    """

    low_cpu_fsdp: bool = True
    """
    If ``True``, we save cpu memory by loading the pretrained vision model on randk0 only
    when init_device is `meta`.
    If TrainConfig.load_path is set, this should be set to ``False`` (default: True)
    """

    attention_type: AttentionType = AttentionType.sdpa
    """
    Attention implementation to use.
    """

    float32_attention: bool = True
    """
    Compute attention in float32
    """

    attention_dropout: float = 0.1
    """
    The dropout probability within the attention modules.
    """

    # Only apply dropout to response tokens
    response_attention_dropout: float = 0.0

    multi_query_attention: Optional[bool] = None
    """
    Deprecated. Use n_kv_heads instead.
    """

    attention_layer_norm: bool = False
    """
    Apply layer norm to the keys and queries within the attention mechanism.
    This can help stabilize training.
    """

    residual_dropout: float = 0.1
    """
    The dropout probability for the MLP and attention output within each block.
    """

    # Only apply dropout to response tokens
    response_residual_dropout: float = 0.0

    embedding_dropout: float = 0.1
    """
    The dropout probability for embeddings.
    """

    layer_norm_type: LayerNormType = LayerNormType.default
    """
    The layernorm implementation to use.
    """

    layer_norm_with_affine: bool = True
    """
    Whether to include bias and weight parameters for the layer norms.
    This only affects layer norms that are immediately followed by a linear layer in the forward pass,
    so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
    to ``False``.
    """

    layer_norm_eps: Optional[float] = None

    attention_layer_norm_with_affine: bool = True
    """
    Toggle affine transform for the QK norms.
    """

    max_sequence_length: int = 1024
    """
    The maximum input sequence length supported by the model.
    """

    max_position_embeddings: Optional[int] = None

    include_bias: bool = True
    """
    Whether or not to include bias parameters in linear layers.
    In PaLM, they got rid of all bias terms because they found that large
    models tend to have near 0 bias terms anyway.
    """

    bias_for_layer_norm: Optional[bool] = None
    """
    Whether or not to include bias parameters in layer norm.
    This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
    layer norm.
    When this is None (the default), it inherits the setting from include_bias.
    """

    scale_logits: bool = False
    """
    If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
    """

    vocab_size: int = 50257
    """
    Vocabulary size of the model.
    """

    embedding_size: Optional[int] = 50304
    """
    The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
    to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
    next multiple of 128 that's greater than ``vocab_size`` can improve throughput
    substantially.
    """

    # For new special tokens
    additional_vocab_size: Optional[int] = None

    new_embedding_init_range: float = 0.02
    """
    How to initialize embedding for new 
    """

    weight_tying: bool = True
    """
    Whether to tie output linear weights to the input embedding.
    """

    pad_token_id: int = -1
    """
    The ID of the token to use for padding. Defaults to the ID of the EOS token.
    """

    init_device: Optional[str] = None
    """
    The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
    """

    init_fn: InitFnType = InitFnType.normal
    """
    The weight initialization strategy.
    """

    init_std: float = 0.02
    """
    The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
    as "normal".
    """

    init_cutoff_factor: Optional[float] = None
    """
    A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
    as "normal". Setting this to None means values are not cutoff.
    """

    norm_after: bool = False
    """
    Apply norm after the attention/feedforward layers rather than before, as introduced in the Swin transformer paper (Liu et al).
    """

    precision: Optional[str] = None
    """
    Precision used to train/evaluate with. You shouldn't set this directly.
    See :data:`TrainConfig.precision` instead.
    """

    moe_num_experts: Optional[int] = 8
    """
    The number of experts to use in the MoE block.
    """

    moe_top_k: Optional[int] = 2
    """
    The number of experts to select for each token.
    """

    moe_mlp_impl: Optional[str] = "sparse"
    """
    Choose "grouped" for grouped GEMM installable via `pip install git+https://[email protected]/tgale96/grouped_gemm.git@66c7195e35e8c4f22fa6a014037ef511bfa397cb`.
    """

    moe_log_expert_assignment: Optional[bool] = False
    """
    Whether to log the expert assignment.
    """

    moe_shared_expert: Optional[bool] = False
    """
    Whether to have an always-used expert like in [DeepSeekMoE](https://arxiv.org/abs/2401.06066).
    """

    moe_lbl_in_fp32: Optional[bool] = False
    """
    Whether to perform load balancing in FP32.
    """

    moe_interleave: Optional[bool] = False
    """
    Interleave sequential with MoE blocks starting with sequential.
    """

    moe_loss_weight: Optional[float] = 0.1
    """
    The weight to use for the MoE load balancing loss.
    """

    moe_zloss_weight: Optional[float] = None
    """
    Weight for MoE router z-loss where None means no router z-loss. 0.001 is a common value.
    """

    moe_dropless: Optional[bool] = True
    """
    Whether to use [dMoE](https://arxiv.org/abs/2211.15841).
    """

    moe_capacity_factor: Optional[float] = 1.25
    """
    The capacity factor to use in the MoE block. Only applies if not using dMoE.
    """

    # Image pre-processing options.
    max_crops: int = 12

    crop_mode: str = "patchify-v2-and-resize-c2"

    do_random_scale: bool = True

    use_col_tokens: bool = True

    # How to prompt the model
    prompt_type: str = "none"

    # System prompt to use
    system_prompt_kind: str = "style"

    # How to format messages
    message_formatting: str = "none"

    always_start_with_space: bool = True

    prompt_override: Optional[str] = None

    default_inference_len: Optional[int] = 65

    overlap_margins: Tuple[int, int] = (4, 4)

    image_padding_embed: Optional[ImagePaddingEmbed] = None

    # What layers to get from the image encoder
    vit_layers: Tuple = (-1,)

    # Controls the image/language connector
    image_pooling_h: int = 2

    image_pooling_w: int = 2

    image_pooling_2d: ImagePooling2DType = ImagePooling2DType.attention

    image_projector: ImageProjectType = ImageProjectType.mlp

    image_feature_dropout: float = 0.0

    use_cls_feature: bool = False

    fix_image_input_idx: int = 2

    # Makes the model ignore the image
    unconditioned: bool = False

    # Use in combination with sub-sequence experts to make imags/text tokens always
    # occupy particular sub-sequences of the input
    pad_to: Optional[int] = None

    # LLM Transformer settings
    initializer_range: float = 0.02

    pad_tokenizer: bool = False

    normalize_input_embeds: bool = False

    use_position_ids: bool = True
    """
    Whether to use position IDs in the model.
    The model operation regarding positional embeddings changes depending on this variable.
    """

    query_pre_attn_scalar: int = 224
    """
    Scalar to apply to the queries before attention.
    Used for Gemma-2.
    """

    attn_logit_softcapping: Optional[float] = None
    """
    Softcap the logits in the attention mechanism.
    Used for Gemma-2.
    """

    final_logit_softcapping: Optional[float] = None
    """
    Softcap the final logits.
    Used for Gemma-2.
    """

    head_dim: Optional[int] = None
    """
    The head dimensionality for the attention mechanism.
    Used for Gemma-2.
    """

    loss_token_weighting: Optional[str] = None

    gin_bindings: Optional[str] = None


class MolmoConfig(PretrainedConfig):
    model_type = "molmo"
    keys_to_ignore_at_inference = ["past_key_values"]  # TODO: confirm

    def __init__(self, use_cache: bool = False, **kwargs):
        model_config = ModelConfig()
        all_kwargs = asdict(model_config)
        all_kwargs.update(kwargs)
        all_kwargs.update({"use_cache": use_cache})
        all_kwargs.update(
            {"architectures": all_kwargs.get("architectures", ["OLMoForCausalLM"]) or ["OLMoForCausalLM"]}
        )
        super().__init__(**all_kwargs)

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

    @property
    def hidden_size(self):
        return self.d_model

    @property
    def image_num_patch(self):
        h, w = (336, 336)
        return h // 14, w // 14
     
    @property
    def llm_patches_per_crop(self):
        h, w = self.image_num_patch
        # Round up in case we need to pad the image features for pooling
        h = (h + self.image_pooling_h - 1) // self.image_pooling_h
        w = (w + self.image_pooling_w - 1) // self.image_pooling_w
        return h, w

    @property
    def effective_n_kv_heads(self) -> int:
        if self.n_kv_heads is None:
            if self.multi_query_attention is True:
                return 1
            else:
                return self.n_heads
        else:
            if self.multi_query_attention is None:
                return self.n_kv_heads
            if self.multi_query_attention:
                n_kv_heads_should_be = 1
            else:
                n_kv_heads_should_be = self.n_heads
            if self.n_kv_heads == n_kv_heads_should_be:
                return n_kv_heads_should_be
            else:
                raise ValueError(
                    "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
                )