File size: 6,602 Bytes
172a846 ef36fa4 172a846 ef36fa4 172a846 ef36fa4 ad41925 ef36fa4 6180ba1 ef36fa4 2462f50 8a83ff8 ef36fa4 172a846 ef36fa4 172a846 ef36fa4 5cd5354 ef36fa4 172a846 ef36fa4 172a846 ef36fa4 172a846 ef36fa4 172a846 ef36fa4 172a846 6180ba1 2462f50 6180ba1 2462f50 6180ba1 ef36fa4 172a846 ef36fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
language:
- en
base_model:
- openai/clip-vit-large-patch14-336
- allenai/OLMoE-1B-7B-0924
datasets:
- allenai/OLMoE-mix-0924
pipeline_tag: image-text-to-text
tags:
- multimodal
- moe
- olmo
- olmoe
- molmo
- molmoe
---
<img src="molmo_logo.png" alt="Logo for the Molmo Project" style="width: auto; height: 50px;">
# MolmoE 1B
Molmo is a family of open vision-language models developed by the Allen Institute for AI.
Molmo models are trained on PixMo, a dataset of 1 million, highly-curated image-text pairs.
It has state-of-the-art performance among multimodal models with a similar size while being fully open-source.
You can find all models in the Molmo family [here](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19).
**Learn more** about the Molmo family [in our announcement blog post](https://molmo.allenai.org/blog).
MolmoE-1B is a multimodal Mixture-of-Experts LLM with 1.5B active and 7.2B total parameters based on [OLMoE-1B-7B-0924](https://huggingface.co/allenai/OLMoE-1B-7B-0924).
It nearly matches the performance of GPT-4V on both academic benchmarks and human evaluation, and achieves state-of-the-art performance among similarly-sized open multimodal models.
This checkpoint is a **preview** of the Molmo release. All artifacts used in creating Molmo (PixMo dataset, training code, evaluations, intermediate checkpoints) will be made available at a later date, furthering our commitment to open-source AI development and reproducibility.
**[Sign up here](https://docs.google.com/forms/d/e/1FAIpQLSdML1MhNNBDsCHpgWG65Oydg2SjZzVasyqlP08nBrWjZp_c7A/viewform)** to be the first to know when artifacts are released.
## Quick Start
To run MolmoE, first install dependencies:
```bash
pip install einops tensorflow torchvision
```
Then, follow these steps:
```python
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import requests
# load the processor
processor = AutoProcessor.from_pretrained(
'allenai/MolmoE-1B-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# load the model
model = AutoModelForCausalLM.from_pretrained(
'allenai/MolmoE-1B-0924',
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# process the image and text
inputs = processor.process(
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
text="Describe this image."
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# only get generated tokens; decode them to text
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# print the generated text
print(generated_text)
# >>> This photograph captures an adorable black Labrador puppy sitting on a weathered
# wooden deck. The deck's planks, which are a mix of light and dark brown with ...
```
## Evaluations
| Model | Average Score on 11 Academic Benchmarks | Human Preference Elo Rating |
|-----------------------------|-----------------------------------------|-----------------------------|
| Molmo 72B | 81.2 | 1077 |
| Molmo 7B-D | 77.3 | 1056 |
| Molmo 7B-O | 74.6 | 1051 |
| **MolmoE 1B (this model)** | **68.6** | **1032** |
| GPT-4o | 78.5 | 1079 |
| GPT-4V | 71.1 | 1041 |
| Gemini 1.5 Pro | 78.3 | 1074 |
| Gemini 1.5 Flash | 75.1 | 1054 |
| Claude 3.5 Sonnet | 76.7 | 1069 |
| Claude 3 Opus | 66.4 | 971 |
| Claude 3 Haiku | 65.3 | 999 |
| Qwen VL2 72B | 79.4 | 1037 |
| Qwen VL2 7B | 73.7 | 1025 |
| Intern VL2 LLAMA 76B | 77.1 | 1018 |
| Intern VL2 8B | 69.4 | 953 |
| Pixtral 12B | 69.5 | 1016 |
| Phi3.5-Vision 4B | 59.7 | 982 |
| PaliGemma 3B | 50.0 | 937 |
| LLAVA OneVision 72B | 76.6 | 1051 |
| LLAVA OneVision 7B | 72.0 | 1024 |
| Cambrian-1 34B | 66.8 | 953 |
| Cambrian-1 8B | 63.4 | 952 |
| xGen - MM - Interleave 4B | 59.5 | 979 |
| LLAVA-1.5 13B | 43.9 | 960 |
| LLAVA-1.5 7B | 40.7 | 951 |
*Benchmarks: AI2D test, ChartQA test, VQA v2.0 test, DocQA test, InfographicVQA test, TextVQA val, RealWorldQA, MMMU val, MathVista testmini, CountBenchQA, Flickr Count (we collected this new dataset that is significantly harder than CountBenchQA).*
## License and Use
This model is licensed under Apache 2.0. It is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
|