allanjie commited on
Commit
a6eda04
1 Parent(s): c1ff5eb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.94 +/- 22.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2372afee50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2372afeee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2372afef70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2372b03040>", "_build": "<function ActorCriticPolicy._build at 0x7f2372b030d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2372b03160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2372b031f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2372b03280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2372b03310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2372b033a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2372b03430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2372afd540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672132157718910563, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5IDxSR4G7hf0RPLSPYjxVq8a8sGJEPQAAgD8AAIA/2qK4vcO9Nbodg3e4B0rDs7H2/jqkCo83AACAPwAAgD9z1Mu9FFqYugbG3zSwbC8wgZ35OlX3JbQAAIA/AACAPwZzgz70PWs/UmtsPe8+vr5JNiE+BC+nvQAAAAAAAAAAc6PZPdd4uD6QWli+tLumvjzxi72vILs9AAAAAAAAAADNHLk89kBHutrNGjoA44w1e4TTO8TkN7kAAIA/AACAP3OQvT0v+CU/FssXvnq/qr6u3DS9UybYvQAAAAAAAAAAMzOJuFxLUbpPOog6fXIsuTexPTsgNZO5AACAPwAAgD+zREu99sh7OeJryTtyrgY4MvomO8D2fzYAAAAAAAAAAAB4CT2POnW6oBMkO35KT75c4Zu8gDqtPQAAgD8AAAAAzWqJvIUTtrmiG0q8l5q7PLyK1DqzNGi8AACAPwAAgD9NwS+9vnWePR4Oxzxzjou+c/aTvHl0lT0AAAAAAAAAAEDqyr2F1p67k4Z9PhDPOb44DBi9gPchvwAAgD8AAIA/ZiMBPbhErjoeyEA6pN6KPKyCWTrm9FI6AAAAAAAAAAD9OZC+5SC8PuUYkT5boZ6+h096vYDtpz0AAAAAAAAAAAD4FztdbWs+isrYPZKzX75ItWo9kGNsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7X4V4Ds7cUCUhpRSlIwBbJRNHgGMAXSUR0CRLpcyWRigdX2UKGgGaAloD0MIstZQai/3cUCUhpRSlGgVTTIBaBZHQJEv8C1Z1V51fZQoaAZoCWgPQwj9wFWewJdwQJSGlFKUaBVNHwFoFkdAkTEvP9kz43V9lChoBmgJaA9DCFvSUQ5mZWxAlIaUUpRoFU0lAWgWR0CRMreRxLkCdX2UKGgGaAloD0MI0Jfe/hygckCUhpRSlGgVTRQBaBZHQJEzy1eBxxV1fZQoaAZoCWgPQwjCE3r9yWdxQJSGlFKUaBVNXAJoFkdAkTSw9vCMxXV9lChoBmgJaA9DCHk7wmkBV3BAlIaUUpRoFU0oAWgWR0CRNRqlxffGdX2UKGgGaAloD0MI9N2tLFGOb0CUhpRSlGgVTR0BaBZHQJE1MFqzqr11fZQoaAZoCWgPQwiSWb3DLcZxQJSGlFKUaBVNJQFoFkdAkTWd/OMVDnV9lChoBmgJaA9DCHrFU480inFAlIaUUpRoFU0TAWgWR0CRNagYgq3FdX2UKGgGaAloD0MIwVjfwCQQc0CUhpRSlGgVTQABaBZHQJE2CzhP0qZ1fZQoaAZoCWgPQwi1/wHWKmJuQJSGlFKUaBVNNQFoFkdAkTZ2oBJZn3V9lChoBmgJaA9DCBn/PuMCyXFAlIaUUpRoFU2OAWgWR0CRNsqslsxgdX2UKGgGaAloD0MIAma+g5+hcECUhpRSlGgVTRoBaBZHQJE3OGahHsl1fZQoaAZoCWgPQwjzVfKxO3JyQJSGlFKUaBVNAgFoFkdAkTdEF0PpZHV9lChoBmgJaA9DCDLlQ1D16HJAlIaUUpRoFU0vAWgWR0CRN7J/G2kSdX2UKGgGaAloD0MIUu4+xwdSckCUhpRSlGgVTTsBaBZHQJE6YLRa5gB1fZQoaAZoCWgPQwgCEHf1qjptQJSGlFKUaBVNlwFoFkdAkTqL08NhE3V9lChoBmgJaA9DCC1dwTYiAnBAlIaUUpRoFU0qAWgWR0CROxz5oGpudX2UKGgGaAloD0MITbuYZrqzUUCUhpRSlGgVS9loFkdAkTyi4FzMinV9lChoBmgJaA9DCHjVA+YhGG9AlIaUUpRoFU0yAWgWR0CRPMrz5GjLdX2UKGgGaAloD0MI6dUApSH5cECUhpRSlGgVTQUBaBZHQJE9ADhcZ+B1fZQoaAZoCWgPQwhBR6taEnZyQJSGlFKUaBVNJAFoFkdAkT6C0rsjV3V9lChoBmgJaA9DCHWxaaUQrnBAlIaUUpRoFU0iAWgWR0CRPoNZNfw7dX2UKGgGaAloD0MIahg+IiZlbkCUhpRSlGgVTU8BaBZHQJE+2Pp6hQF1fZQoaAZoCWgPQwiM2ZJVUT1wQJSGlFKUaBVNFwFoFkdAkT+atDD0lXV9lChoBmgJaA9DCOjewyVHd3JAlIaUUpRoFU0+AWgWR0CRP9AXl8w6dX2UKGgGaAloD0MIxm8KK5WxcECUhpRSlGgVTRIBaBZHQJE/5/9YOlR1fZQoaAZoCWgPQwhl48EWe5ZwQJSGlFKUaBVNEgFoFkdAkT/y6lLvkXV9lChoBmgJaA9DCDIepRKe229AlIaUUpRoFU0qAWgWR0CRQRTDO1OTdX2UKGgGaAloD0MI+py7XW+WcUCUhpRSlGgVTVYBaBZHQJFBJCfHxSZ1fZQoaAZoCWgPQwiRXz/EhlZxQJSGlFKUaBVNeAFoFkdAkUFrylN1yXV9lChoBmgJaA9DCLywNVv5dG9AlIaUUpRoFU0AAWgWR0CRQxlLeyiVdX2UKGgGaAloD0MIED6UaImOcUCUhpRSlGgVTT8BaBZHQJFEoS+QEIR1fZQoaAZoCWgPQwiu00hL5QJvQJSGlFKUaBVNTQFoFkdAkUT3erMkhXV9lChoBmgJaA9DCHv18dC3sHBAlIaUUpRoFU0FAWgWR0CRRR4YaYNRdX2UKGgGaAloD0MIebDFbh/OcUCUhpRSlGgVTS8BaBZHQJFG2P91loV1fZQoaAZoCWgPQwj+YOC5N3txQJSGlFKUaBVNBwFoFkdAkUbhwMpgC3V9lChoBmgJaA9DCFGk+zmFYW5AlIaUUpRoFU0WAWgWR0CRR223KB/adX2UKGgGaAloD0MIR450BgZZcUCUhpRSlGgVTUwBaBZHQJFHiIHkcS51fZQoaAZoCWgPQwgJGjOJ+vhyQJSGlFKUaBVNEgFoFkdAkUhf029+PXV9lChoBmgJaA9DCJDAH36+snFAlIaUUpRoFU0wAWgWR0CRSJkCFK02dX2UKGgGaAloD0MIKxiV1AkRbkCUhpRSlGgVTRsBaBZHQJFI+0WuX/p1fZQoaAZoCWgPQwh7gy9MpntsQJSGlFKUaBVNKQFoFkdAkUlD1XeWOnV9lChoBmgJaA9DCAaAKm5cvW9AlIaUUpRoFU0rAWgWR0CRSWOiFj/ddX2UKGgGaAloD0MIibMiamI5cUCUhpRSlGgVTSEBaBZHQJFKRr433pR1fZQoaAZoCWgPQwgUsB2M2ANzQJSGlFKUaBVNLwFoFkdAkUqT/p+tsHV9lChoBmgJaA9DCOIGfH7Yp3JAlIaUUpRoFU0FAWgWR0CRS1iwSrYHdX2UKGgGaAloD0MIuRluwCe1cECUhpRSlGgVTVcBaBZHQJFfPLV4HHF1fZQoaAZoCWgPQwg7NZcbDBNuQJSGlFKUaBVNpAJoFkdAkXrzrZ8KHHV9lChoBmgJaA9DCGgfK/jttXFAlIaUUpRoFU3gAmgWR0CRiPIwudwvdX2UKGgGaAloD0MIhZZ1/xggcECUhpRSlGgVTesCaBZHQJGKoAYHgP51fZQoaAZoCWgPQwj9wFWeQCJlQJSGlFKUaBVN6ANoFkdAkZPAZTAFgXV9lChoBmgJaA9DCO7RG+4jhmJAlIaUUpRoFU3oA2gWR0CRlMOI68xsdX2UKGgGaAloD0MIKnEd44oFcECUhpRSlGgVTScDaBZHQJGVi51/2Cd1fZQoaAZoCWgPQwgHRIgr5/1jQJSGlFKUaBVN6ANoFkdAkZgj/lyR0XV9lChoBmgJaA9DCHb51od13WBAlIaUUpRoFU3oA2gWR0CRmDmnfl6rdX2UKGgGaAloD0MIW1zjM9mLXECUhpRSlGgVTegDaBZHQJGZH27FsHl1fZQoaAZoCWgPQwgQPL69a+teQJSGlFKUaBVN6ANoFkdAkZlNL6DXe3V9lChoBmgJaA9DCPaZsz7l4lBAlIaUUpRoFU3oA2gWR0CRmqc8kleGdX2UKGgGaAloD0MIGxAhrpy+WECUhpRSlGgVTegDaBZHQJGbATyrgfl1fZQoaAZoCWgPQwgzMzMzM5BZQJSGlFKUaBVN6ANoFkdAkZw3k5p8GHV9lChoBmgJaA9DCFKY9zjTBF1AlIaUUpRoFU3oA2gWR0CRnZg2606YdX2UKGgGaAloD0MItd0E37TKYECUhpRSlGgVTegDaBZHQJGeBxp+MIh1fZQoaAZoCWgPQwhYG2MnPO9kQJSGlFKUaBVN6ANoFkdAkZ/o60Y0mHV9lChoBmgJaA9DCD7qr1fYsGRAlIaUUpRoFU3oA2gWR0CRz8butwJgdX2UKGgGaAloD0MIDf0TXCwacUCUhpRSlGgVTc0CaBZHQJHaVyq+8Gt1fZQoaAZoCWgPQwjxDYXP1o1XQJSGlFKUaBVN6ANoFkdAkd0xNM495nV9lChoBmgJaA9DCCx96IJ6/WBAlIaUUpRoFU3oA2gWR0CR3rMKkVN6dX2UKGgGaAloD0MI2T15WKhmX0CUhpRSlGgVTegDaBZHQJHnH+VC5Vh1fZQoaAZoCWgPQwiKPEm6ZmVfQJSGlFKUaBVN6ANoFkdAkef65LAYYXV9lChoBmgJaA9DCGOcvwmFTl9AlIaUUpRoFU3oA2gWR0CR6LOlO45MdX2UKGgGaAloD0MIj3IwmwDgYECUhpRSlGgVTegDaBZHQJHrBM6BAfN1fZQoaAZoCWgPQwjMlqyKcNhlQJSGlFKUaBVN6ANoFkdAkesZpi7TUnV9lChoBmgJaA9DCKOutfepM2ZAlIaUUpRoFU3oA2gWR0CR6+z9jwx4dX2UKGgGaAloD0MIBWnGomm7YECUhpRSlGgVTegDaBZHQJHsF8BuGbl1fZQoaAZoCWgPQwgUdeYeEvBfQJSGlFKUaBVN6ANoFkdAke2kLQXyiHV9lChoBmgJaA9DCOokW11OlVxAlIaUUpRoFU3oA2gWR0CR7tOpsGgSdX2UKGgGaAloD0MIec4WEFqUYECUhpRSlGgVTegDaBZHQJHwOKLsKLN1fZQoaAZoCWgPQwhZ3H9kurxgQJSGlFKUaBVN6ANoFkdAkfC5EMLF43V9lChoBmgJaA9DCA9/TdaoxFxAlIaUUpRoFU3oA2gWR0CR8rGEwnIAdX2UKGgGaAloD0MIs5WX/E/jbkCUhpRSlGgVTQ4CaBZHQJIWv6guh9N1fZQoaAZoCWgPQwikbfyJSpxxQJSGlFKUaBVN0QJoFkdAkhsNyo4uLHV9lChoBmgJaA9DCBHg9C7eJ2FAlIaUUpRoFU3oA2gWR0CSILZF5OafdX2UKGgGaAloD0MIICV2be/DcECUhpRSlGgVTW8CaBZHQJIkDHXEqDt1fZQoaAZoCWgPQwg2d/S/3OViQJSGlFKUaBVN6ANoFkdAkinAh0QsgHV9lChoBmgJaA9DCLlUpS0uKGRAlIaUUpRoFU3oA2gWR0CSLFJcgQpXdX2UKGgGaAloD0MIoIobt5jaa0CUhpRSlGgVTXwCaBZHQJItQEW69TR1fZQoaAZoCWgPQwgDfSJPUgRwQJSGlFKUaBVNfQFoFkdAkjBCmEXcg3V9lChoBmgJaA9DCG+8OzLWHGNAlIaUUpRoFU3oA2gWR0CSNSQXAM2FdX2UKGgGaAloD0MI8DUEx2XRX0CUhpRSlGgVTegDaBZHQJI2pbqyGBZ1fZQoaAZoCWgPQwjQudv1Ul1iQJSGlFKUaBVN6ANoFkdAkjitdzGPxXV9lChoBmgJaA9DCHTsoBLXmF9AlIaUUpRoFU3oA2gWR0CSOL0CRwIddX2UKGgGaAloD0MI9RJjmf4dYUCUhpRSlGgVTegDaBZHQJI5c1aW5Yp1fZQoaAZoCWgPQwiKVu4FZpVdQJSGlFKUaBVN6ANoFkdAkjmZ0r9VFXV9lChoBmgJaA9DCB42kZmLR25AlIaUUpRoFU05AWgWR0CSPALeQ+2WdX2UKGgGaAloD0MIYoGv6NaMXUCUhpRSlGgVTegDaBZHQJI8MFJQLux1fZQoaAZoCWgPQwgAVHHjFn1gQJSGlFKUaBVN6ANoFkdAkj2M/dIoVnV9lChoBmgJaA9DCF6hD5axVmFAlIaUUpRoFU3oA2gWR0CSPgc8TzundX2UKGgGaAloD0MIL28O12qecECUhpRSlGgVTRoBaBZHQJI+q/qPfbd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
demo_stable_luna.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cfcaec01e8234ce59479d58fb502634a5e0b5fd9120c50036331dd7fcc5ad40
3
+ size 147218
demo_stable_luna/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
demo_stable_luna/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2372afee50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2372afeee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2372afef70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2372b03040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2372b030d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2372b03160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2372b031f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2372b03280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2372b03310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2372b033a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2372b03430>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2372afd540>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672132157718910563,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJr5IDxSR4G7hf0RPLSPYjxVq8a8sGJEPQAAgD8AAIA/2qK4vcO9Nbodg3e4B0rDs7H2/jqkCo83AACAPwAAgD9z1Mu9FFqYugbG3zSwbC8wgZ35OlX3JbQAAIA/AACAPwZzgz70PWs/UmtsPe8+vr5JNiE+BC+nvQAAAAAAAAAAc6PZPdd4uD6QWli+tLumvjzxi72vILs9AAAAAAAAAADNHLk89kBHutrNGjoA44w1e4TTO8TkN7kAAIA/AACAP3OQvT0v+CU/FssXvnq/qr6u3DS9UybYvQAAAAAAAAAAMzOJuFxLUbpPOog6fXIsuTexPTsgNZO5AACAPwAAgD+zREu99sh7OeJryTtyrgY4MvomO8D2fzYAAAAAAAAAAAB4CT2POnW6oBMkO35KT75c4Zu8gDqtPQAAgD8AAAAAzWqJvIUTtrmiG0q8l5q7PLyK1DqzNGi8AACAPwAAgD9NwS+9vnWePR4Oxzxzjou+c/aTvHl0lT0AAAAAAAAAAEDqyr2F1p67k4Z9PhDPOb44DBi9gPchvwAAgD8AAIA/ZiMBPbhErjoeyEA6pN6KPKyCWTrm9FI6AAAAAAAAAAD9OZC+5SC8PuUYkT5boZ6+h096vYDtpz0AAAAAAAAAAAD4FztdbWs+isrYPZKzX75ItWo9kGNsPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7X4V4Ds7cUCUhpRSlIwBbJRNHgGMAXSUR0CRLpcyWRigdX2UKGgGaAloD0MIstZQai/3cUCUhpRSlGgVTTIBaBZHQJEv8C1Z1V51fZQoaAZoCWgPQwj9wFWewJdwQJSGlFKUaBVNHwFoFkdAkTEvP9kz43V9lChoBmgJaA9DCFvSUQ5mZWxAlIaUUpRoFU0lAWgWR0CRMreRxLkCdX2UKGgGaAloD0MI0Jfe/hygckCUhpRSlGgVTRQBaBZHQJEzy1eBxxV1fZQoaAZoCWgPQwjCE3r9yWdxQJSGlFKUaBVNXAJoFkdAkTSw9vCMxXV9lChoBmgJaA9DCHk7wmkBV3BAlIaUUpRoFU0oAWgWR0CRNRqlxffGdX2UKGgGaAloD0MI9N2tLFGOb0CUhpRSlGgVTR0BaBZHQJE1MFqzqr11fZQoaAZoCWgPQwiSWb3DLcZxQJSGlFKUaBVNJQFoFkdAkTWd/OMVDnV9lChoBmgJaA9DCHrFU480inFAlIaUUpRoFU0TAWgWR0CRNagYgq3FdX2UKGgGaAloD0MIwVjfwCQQc0CUhpRSlGgVTQABaBZHQJE2CzhP0qZ1fZQoaAZoCWgPQwi1/wHWKmJuQJSGlFKUaBVNNQFoFkdAkTZ2oBJZn3V9lChoBmgJaA9DCBn/PuMCyXFAlIaUUpRoFU2OAWgWR0CRNsqslsxgdX2UKGgGaAloD0MIAma+g5+hcECUhpRSlGgVTRoBaBZHQJE3OGahHsl1fZQoaAZoCWgPQwjzVfKxO3JyQJSGlFKUaBVNAgFoFkdAkTdEF0PpZHV9lChoBmgJaA9DCDLlQ1D16HJAlIaUUpRoFU0vAWgWR0CRN7J/G2kSdX2UKGgGaAloD0MIUu4+xwdSckCUhpRSlGgVTTsBaBZHQJE6YLRa5gB1fZQoaAZoCWgPQwgCEHf1qjptQJSGlFKUaBVNlwFoFkdAkTqL08NhE3V9lChoBmgJaA9DCC1dwTYiAnBAlIaUUpRoFU0qAWgWR0CROxz5oGpudX2UKGgGaAloD0MITbuYZrqzUUCUhpRSlGgVS9loFkdAkTyi4FzMinV9lChoBmgJaA9DCHjVA+YhGG9AlIaUUpRoFU0yAWgWR0CRPMrz5GjLdX2UKGgGaAloD0MI6dUApSH5cECUhpRSlGgVTQUBaBZHQJE9ADhcZ+B1fZQoaAZoCWgPQwhBR6taEnZyQJSGlFKUaBVNJAFoFkdAkT6C0rsjV3V9lChoBmgJaA9DCHWxaaUQrnBAlIaUUpRoFU0iAWgWR0CRPoNZNfw7dX2UKGgGaAloD0MIahg+IiZlbkCUhpRSlGgVTU8BaBZHQJE+2Pp6hQF1fZQoaAZoCWgPQwiM2ZJVUT1wQJSGlFKUaBVNFwFoFkdAkT+atDD0lXV9lChoBmgJaA9DCOjewyVHd3JAlIaUUpRoFU0+AWgWR0CRP9AXl8w6dX2UKGgGaAloD0MIxm8KK5WxcECUhpRSlGgVTRIBaBZHQJE/5/9YOlR1fZQoaAZoCWgPQwhl48EWe5ZwQJSGlFKUaBVNEgFoFkdAkT/y6lLvkXV9lChoBmgJaA9DCDIepRKe229AlIaUUpRoFU0qAWgWR0CRQRTDO1OTdX2UKGgGaAloD0MI+py7XW+WcUCUhpRSlGgVTVYBaBZHQJFBJCfHxSZ1fZQoaAZoCWgPQwiRXz/EhlZxQJSGlFKUaBVNeAFoFkdAkUFrylN1yXV9lChoBmgJaA9DCLywNVv5dG9AlIaUUpRoFU0AAWgWR0CRQxlLeyiVdX2UKGgGaAloD0MIED6UaImOcUCUhpRSlGgVTT8BaBZHQJFEoS+QEIR1fZQoaAZoCWgPQwiu00hL5QJvQJSGlFKUaBVNTQFoFkdAkUT3erMkhXV9lChoBmgJaA9DCHv18dC3sHBAlIaUUpRoFU0FAWgWR0CRRR4YaYNRdX2UKGgGaAloD0MIebDFbh/OcUCUhpRSlGgVTS8BaBZHQJFG2P91loV1fZQoaAZoCWgPQwj+YOC5N3txQJSGlFKUaBVNBwFoFkdAkUbhwMpgC3V9lChoBmgJaA9DCFGk+zmFYW5AlIaUUpRoFU0WAWgWR0CRR223KB/adX2UKGgGaAloD0MIR450BgZZcUCUhpRSlGgVTUwBaBZHQJFHiIHkcS51fZQoaAZoCWgPQwgJGjOJ+vhyQJSGlFKUaBVNEgFoFkdAkUhf029+PXV9lChoBmgJaA9DCJDAH36+snFAlIaUUpRoFU0wAWgWR0CRSJkCFK02dX2UKGgGaAloD0MIKxiV1AkRbkCUhpRSlGgVTRsBaBZHQJFI+0WuX/p1fZQoaAZoCWgPQwh7gy9MpntsQJSGlFKUaBVNKQFoFkdAkUlD1XeWOnV9lChoBmgJaA9DCAaAKm5cvW9AlIaUUpRoFU0rAWgWR0CRSWOiFj/ddX2UKGgGaAloD0MIibMiamI5cUCUhpRSlGgVTSEBaBZHQJFKRr433pR1fZQoaAZoCWgPQwgUsB2M2ANzQJSGlFKUaBVNLwFoFkdAkUqT/p+tsHV9lChoBmgJaA9DCOIGfH7Yp3JAlIaUUpRoFU0FAWgWR0CRS1iwSrYHdX2UKGgGaAloD0MIuRluwCe1cECUhpRSlGgVTVcBaBZHQJFfPLV4HHF1fZQoaAZoCWgPQwg7NZcbDBNuQJSGlFKUaBVNpAJoFkdAkXrzrZ8KHHV9lChoBmgJaA9DCGgfK/jttXFAlIaUUpRoFU3gAmgWR0CRiPIwudwvdX2UKGgGaAloD0MIhZZ1/xggcECUhpRSlGgVTesCaBZHQJGKoAYHgP51fZQoaAZoCWgPQwj9wFWeQCJlQJSGlFKUaBVN6ANoFkdAkZPAZTAFgXV9lChoBmgJaA9DCO7RG+4jhmJAlIaUUpRoFU3oA2gWR0CRlMOI68xsdX2UKGgGaAloD0MIKnEd44oFcECUhpRSlGgVTScDaBZHQJGVi51/2Cd1fZQoaAZoCWgPQwgHRIgr5/1jQJSGlFKUaBVN6ANoFkdAkZgj/lyR0XV9lChoBmgJaA9DCHb51od13WBAlIaUUpRoFU3oA2gWR0CRmDmnfl6rdX2UKGgGaAloD0MIW1zjM9mLXECUhpRSlGgVTegDaBZHQJGZH27FsHl1fZQoaAZoCWgPQwgQPL69a+teQJSGlFKUaBVN6ANoFkdAkZlNL6DXe3V9lChoBmgJaA9DCPaZsz7l4lBAlIaUUpRoFU3oA2gWR0CRmqc8kleGdX2UKGgGaAloD0MIGxAhrpy+WECUhpRSlGgVTegDaBZHQJGbATyrgfl1fZQoaAZoCWgPQwgzMzMzM5BZQJSGlFKUaBVN6ANoFkdAkZw3k5p8GHV9lChoBmgJaA9DCFKY9zjTBF1AlIaUUpRoFU3oA2gWR0CRnZg2606YdX2UKGgGaAloD0MItd0E37TKYECUhpRSlGgVTegDaBZHQJGeBxp+MIh1fZQoaAZoCWgPQwhYG2MnPO9kQJSGlFKUaBVN6ANoFkdAkZ/o60Y0mHV9lChoBmgJaA9DCD7qr1fYsGRAlIaUUpRoFU3oA2gWR0CRz8butwJgdX2UKGgGaAloD0MIDf0TXCwacUCUhpRSlGgVTc0CaBZHQJHaVyq+8Gt1fZQoaAZoCWgPQwjxDYXP1o1XQJSGlFKUaBVN6ANoFkdAkd0xNM495nV9lChoBmgJaA9DCCx96IJ6/WBAlIaUUpRoFU3oA2gWR0CR3rMKkVN6dX2UKGgGaAloD0MI2T15WKhmX0CUhpRSlGgVTegDaBZHQJHnH+VC5Vh1fZQoaAZoCWgPQwiKPEm6ZmVfQJSGlFKUaBVN6ANoFkdAkef65LAYYXV9lChoBmgJaA9DCGOcvwmFTl9AlIaUUpRoFU3oA2gWR0CR6LOlO45MdX2UKGgGaAloD0MIj3IwmwDgYECUhpRSlGgVTegDaBZHQJHrBM6BAfN1fZQoaAZoCWgPQwjMlqyKcNhlQJSGlFKUaBVN6ANoFkdAkesZpi7TUnV9lChoBmgJaA9DCKOutfepM2ZAlIaUUpRoFU3oA2gWR0CR6+z9jwx4dX2UKGgGaAloD0MIBWnGomm7YECUhpRSlGgVTegDaBZHQJHsF8BuGbl1fZQoaAZoCWgPQwgUdeYeEvBfQJSGlFKUaBVN6ANoFkdAke2kLQXyiHV9lChoBmgJaA9DCOokW11OlVxAlIaUUpRoFU3oA2gWR0CR7tOpsGgSdX2UKGgGaAloD0MIec4WEFqUYECUhpRSlGgVTegDaBZHQJHwOKLsKLN1fZQoaAZoCWgPQwhZ3H9kurxgQJSGlFKUaBVN6ANoFkdAkfC5EMLF43V9lChoBmgJaA9DCA9/TdaoxFxAlIaUUpRoFU3oA2gWR0CR8rGEwnIAdX2UKGgGaAloD0MIs5WX/E/jbkCUhpRSlGgVTQ4CaBZHQJIWv6guh9N1fZQoaAZoCWgPQwikbfyJSpxxQJSGlFKUaBVN0QJoFkdAkhsNyo4uLHV9lChoBmgJaA9DCBHg9C7eJ2FAlIaUUpRoFU3oA2gWR0CSILZF5OafdX2UKGgGaAloD0MIICV2be/DcECUhpRSlGgVTW8CaBZHQJIkDHXEqDt1fZQoaAZoCWgPQwg2d/S/3OViQJSGlFKUaBVN6ANoFkdAkinAh0QsgHV9lChoBmgJaA9DCLlUpS0uKGRAlIaUUpRoFU3oA2gWR0CSLFJcgQpXdX2UKGgGaAloD0MIoIobt5jaa0CUhpRSlGgVTXwCaBZHQJItQEW69TR1fZQoaAZoCWgPQwgDfSJPUgRwQJSGlFKUaBVNfQFoFkdAkjBCmEXcg3V9lChoBmgJaA9DCG+8OzLWHGNAlIaUUpRoFU3oA2gWR0CSNSQXAM2FdX2UKGgGaAloD0MI8DUEx2XRX0CUhpRSlGgVTegDaBZHQJI2pbqyGBZ1fZQoaAZoCWgPQwjQudv1Ul1iQJSGlFKUaBVN6ANoFkdAkjitdzGPxXV9lChoBmgJaA9DCHTsoBLXmF9AlIaUUpRoFU3oA2gWR0CSOL0CRwIddX2UKGgGaAloD0MI9RJjmf4dYUCUhpRSlGgVTegDaBZHQJI5c1aW5Yp1fZQoaAZoCWgPQwiKVu4FZpVdQJSGlFKUaBVN6ANoFkdAkjmZ0r9VFXV9lChoBmgJaA9DCB42kZmLR25AlIaUUpRoFU05AWgWR0CSPALeQ+2WdX2UKGgGaAloD0MIYoGv6NaMXUCUhpRSlGgVTegDaBZHQJI8MFJQLux1fZQoaAZoCWgPQwgAVHHjFn1gQJSGlFKUaBVN6ANoFkdAkj2M/dIoVnV9lChoBmgJaA9DCF6hD5axVmFAlIaUUpRoFU3oA2gWR0CSPgc8TzundX2UKGgGaAloD0MIL28O12qecECUhpRSlGgVTRoBaBZHQJI+q/qPfbd1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
demo_stable_luna/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:141e264f52131e5ba5b77776ab4348d715d85033c306a6cb7678b882db0c8476
3
+ size 87929
demo_stable_luna/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5b6b06450f72737990b46ab7d2559a02109d25150778d7192b2357b9b707cbf
3
+ size 43201
demo_stable_luna/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
demo_stable_luna/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.93753679135153, "std_reward": 22.09920062004226, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T09:30:37.960213"}