import tensorflow as tf from pca_utility import PCAUtility import numpy as np class ASMLoss: def __init__(self, dataset_name, accuracy): self.dataset_name = dataset_name self.accuracy = accuracy def calculate_pose_loss(self, x_pr, x_gt): return tf.reduce_mean(tf.square(x_gt - x_pr)) def calculate_landmark_ASM_assisted_loss(self, landmark_pr, landmark_gt, current_epoch, total_steps): """ :param landmark_pr: :param landmark_gt: :param current_epoch: :param total_steps: :return: """ # calculating ASMLoss weight: asm_weight = 0.5 if current_epoch < total_steps//3: asm_weight = 2.0 elif total_steps//3 <= current_epoch < 2*total_steps//3: asm_weight = 1.0 # creating the ASM-ground truth landmark_gt_asm = self._calculate_asm(input_tensor=landmark_gt) # calculating ASMLoss asm_loss = tf.reduce_mean(tf.square(landmark_gt_asm - landmark_pr)) # calculating MSELoss mse_loss = tf.reduce_mean(tf.square(landmark_gt - landmark_pr)) # calculating total loss return mse_loss + asm_weight * asm_loss def _calculate_asm(self, input_tensor): pca_utility = PCAUtility() eigenvalues, eigenvectors, meanvector = pca_utility.load_pca_obj(self.dataset_name, pca_percentages=self.accuracy) input_vector = np.array(input_tensor) out_asm_vector = [] batch_size = input_vector.shape[0] for i in range(batch_size): b_vector_p = self._calculate_b_vector(input_vector[i], eigenvalues, eigenvectors, meanvector) out_asm_vector.append(meanvector + np.dot(eigenvectors, b_vector_p)) out_asm_vector = np.array(out_asm_vector) return out_asm_vector def _calculate_b_vector(self, predicted_vector, eigenvalues, eigenvectors, meanvector): b_vector = np.dot(eigenvectors.T, predicted_vector - meanvector) # revised b to be in -3lambda => i = 0 for b_item in b_vector: lambda_i_sqr = 3 * np.sqrt(eigenvalues[i]) if b_item > 0: b_item = min(b_item, lambda_i_sqr) else: b_item = max(b_item, -1 * lambda_i_sqr) b_vector[i] = b_item i += 1 return b_vector