|
import tensorflow as tf |
|
from pca_utility import PCAUtility |
|
import numpy as np |
|
|
|
|
|
class ASMLoss: |
|
def __init__(self, dataset_name, accuracy): |
|
self.dataset_name = dataset_name |
|
self.accuracy = accuracy |
|
|
|
def calculate_pose_loss(self, x_pr, x_gt): |
|
return tf.reduce_mean(tf.square(x_gt - x_pr)) |
|
|
|
def calculate_landmark_ASM_assisted_loss(self, landmark_pr, landmark_gt, current_epoch, total_steps): |
|
""" |
|
:param landmark_pr: |
|
:param landmark_gt: |
|
:param current_epoch: |
|
:param total_steps: |
|
:return: |
|
""" |
|
|
|
asm_weight = 0.5 |
|
if current_epoch < total_steps//3: asm_weight = 2.0 |
|
elif total_steps//3 <= current_epoch < 2*total_steps//3: asm_weight = 1.0 |
|
|
|
|
|
landmark_gt_asm = self._calculate_asm(input_tensor=landmark_gt) |
|
|
|
|
|
asm_loss = tf.reduce_mean(tf.square(landmark_gt_asm - landmark_pr)) |
|
|
|
|
|
mse_loss = tf.reduce_mean(tf.square(landmark_gt - landmark_pr)) |
|
|
|
|
|
return mse_loss + asm_weight * asm_loss |
|
|
|
def _calculate_asm(self, input_tensor): |
|
pca_utility = PCAUtility() |
|
eigenvalues, eigenvectors, meanvector = pca_utility.load_pca_obj(self.dataset_name, pca_percentages=self.accuracy) |
|
|
|
input_vector = np.array(input_tensor) |
|
out_asm_vector = [] |
|
batch_size = input_vector.shape[0] |
|
for i in range(batch_size): |
|
b_vector_p = self._calculate_b_vector(input_vector[i], eigenvalues, eigenvectors, meanvector) |
|
out_asm_vector.append(meanvector + np.dot(eigenvectors, b_vector_p)) |
|
|
|
out_asm_vector = np.array(out_asm_vector) |
|
return out_asm_vector |
|
|
|
def _calculate_b_vector(self, predicted_vector, eigenvalues, eigenvectors, meanvector): |
|
b_vector = np.dot(eigenvectors.T, predicted_vector - meanvector) |
|
|
|
i = 0 |
|
for b_item in b_vector: |
|
lambda_i_sqr = 3 * np.sqrt(eigenvalues[i]) |
|
if b_item > 0: |
|
b_item = min(b_item, lambda_i_sqr) |
|
else: |
|
b_item = max(b_item, -1 * lambda_i_sqr) |
|
b_vector[i] = b_item |
|
i += 1 |
|
|
|
return b_vector |
|
|
|
|
|
|
|
|