ASMNet / image_utility.py
daliprf
init
144b876
raw
history blame
24.9 kB
import random
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import math
from skimage.transform import warp, AffineTransform
import cv2
from scipy import misc
from skimage.transform import rotate
from PIL import Image
from PIL import ImageOps
from skimage.transform import resize
from skimage import transform
from skimage.transform import SimilarityTransform, AffineTransform
import random
from configuration import DatasetName
class ImageUtility:
def crop_and_save(self, _image, _label, file_name, num_of_landmarks, dataset_name):
try:
'''crop data: we add a small margin to the images'''
xy_points, x_points, y_points = self.create_landmarks(landmarks=_label,
scale_factor_x=1, scale_factor_y=1)
# self.print_image_arr(str(x_points[0]), _image, x_points, y_points)
img_arr, points_arr = self.cropImg(_image, x_points, y_points, no_padding=False)
# img_arr = output_img
# points_arr = t_label
'''resize image to 224*224'''
resized_img = resize(img_arr,
(224, 224, 3),
anti_aliasing=True)
dims = img_arr.shape
height = dims[0]
width = dims[1]
scale_factor_y = 224 / height
scale_factor_x = 224 / width
'''rescale and retrieve landmarks'''
landmark_arr_xy, landmark_arr_x, landmark_arr_y = \
self.create_landmarks(landmarks=points_arr,
scale_factor_x=scale_factor_x,
scale_factor_y=scale_factor_y)
min_b = 0.0
max_b = 224
if not(min(landmark_arr_x) < min_b or min(landmark_arr_y) < min_b or
max(landmark_arr_x) > max_b or max(landmark_arr_y) > max_b):
# self.print_image_arr(str(landmark_arr_x[0]), resized_img, landmark_arr_x, landmark_arr_y)
im = Image.fromarray((resized_img * 255).astype(np.uint8))
im.save(str(file_name) + '.jpg')
pnt_file = open(str(file_name) + ".pts", "w")
pre_txt = ["version: 1 \n", "n_points: 68 \n", "{ \n"]
pnt_file.writelines(pre_txt)
points_txt = ""
for i in range(0, len(landmark_arr_xy), 2):
points_txt += str(landmark_arr_xy[i]) + " " + str(landmark_arr_xy[i + 1]) + "\n"
pnt_file.writelines(points_txt)
pnt_file.write("} \n")
pnt_file.close()
except Exception as e:
print(e)
def random_rotate(self, _image, _label, file_name, num_of_landmarks, dataset_name):
try:
xy_points, x_points, y_points = self.create_landmarks(landmarks=_label,
scale_factor_x=1, scale_factor_y=1)
# self.print_image_arr(str(xy_points[8]), _image, x_points, y_points)
_image, _label = self.cropImg_2time(_image, x_points, y_points)
_image = self.__noisy(_image)
scale = (np.random.uniform(0.8, 1.0), np.random.uniform(0.8, 1.0))
# scale = (1, 1)
rot = np.random.uniform(-1 * 0.55, 0.55)
translation = (0, 0)
shear = 0
tform = AffineTransform(
scale=scale, # ,
rotation=rot,
translation=translation,
shear=np.deg2rad(shear)
)
output_img = transform.warp(_image, tform.inverse, mode='symmetric')
sx, sy = scale
t_matrix = np.array([
[sx * math.cos(rot), -sy * math.sin(rot + shear), 0],
[sx * math.sin(rot), sy * math.cos(rot + shear), 0],
[0, 0, 1]
])
landmark_arr_xy, landmark_arr_x, landmark_arr_y = self.create_landmarks(_label, 1, 1)
label = np.array(landmark_arr_x + landmark_arr_y).reshape([2, num_of_landmarks])
marging = np.ones([1, num_of_landmarks])
label = np.concatenate((label, marging), axis=0)
label_t = np.dot(t_matrix, label)
lbl_flat = np.delete(label_t, 2, axis=0).reshape([2*num_of_landmarks])
t_label = self.__reorder(lbl_flat, num_of_landmarks)
'''crop data: we add a small margin to the images'''
xy_points, x_points, y_points = self.create_landmarks(landmarks=t_label,
scale_factor_x=1, scale_factor_y=1)
img_arr, points_arr = self.cropImg(output_img, x_points, y_points, no_padding=False)
# img_arr = output_img
# points_arr = t_label
'''resize image to 224*224'''
resized_img = resize(img_arr,
(224, 224, 3),
anti_aliasing=True)
dims = img_arr.shape
height = dims[0]
width = dims[1]
scale_factor_y = 224 / height
scale_factor_x = 224 / width
'''rescale and retrieve landmarks'''
landmark_arr_xy, landmark_arr_x, landmark_arr_y = \
self.create_landmarks(landmarks=points_arr,
scale_factor_x=scale_factor_x,
scale_factor_y=scale_factor_y)
min_b = 0.0
max_b = 224
if dataset_name == DatasetName.cofw:
min_b = 5.0
max_b = 214
if not(min(landmark_arr_x) < 0 or min(landmark_arr_y) < min_b or
max(landmark_arr_x) > 224 or max(landmark_arr_y) > max_b):
# self.print_image_arr(str(landmark_arr_x[0]), resized_img, landmark_arr_x, landmark_arr_y)
im = Image.fromarray((resized_img * 255).astype(np.uint8))
im.save(str(file_name) + '.jpg')
pnt_file = open(str(file_name) + ".pts", "w")
pre_txt = ["version: 1 \n", "n_points: 68 \n", "{ \n"]
pnt_file.writelines(pre_txt)
points_txt = ""
for i in range(0, len(landmark_arr_xy), 2):
points_txt += str(landmark_arr_xy[i]) + " " + str(landmark_arr_xy[i + 1]) + "\n"
pnt_file.writelines(points_txt)
pnt_file.write("} \n")
pnt_file.close()
return t_label, output_img
except Exception as e:
print(e)
return None, None
def random_rotate_m(self, _image, _label_img, file_name):
rot = random.uniform(-80.9, 80.9)
output_img = rotate(_image, rot, resize=True)
output_img_lbl = rotate(_label_img, rot, resize=True)
im = Image.fromarray((output_img * 255).astype(np.uint8))
im_lbl = Image.fromarray((output_img_lbl * 255).astype(np.uint8))
im_m = ImageOps.mirror(im)
im_lbl_m = ImageOps.mirror(im_lbl)
im.save(str(file_name)+'.jpg')
# im_lbl.save(str(file_name)+'_lbl.jpg')
im_m.save(str(file_name) + '_m.jpg')
# im_lbl_m.save(str(file_name) + '_m_lbl.jpg')
im_lbl_ar = np.array(im_lbl)
im_lbl_m_ar = np.array(im_lbl_m)
self.__save_label(im_lbl_ar, file_name, np.array(im))
self.__save_label(im_lbl_m_ar, file_name+"_m", np.array(im_m))
def __save_label(self, im_lbl_ar, file_name, img_arr):
im_lbl_point = []
for i in range(im_lbl_ar.shape[0]):
for j in range(im_lbl_ar.shape[1]):
if im_lbl_ar[i, j] != 0:
im_lbl_point.append(j)
im_lbl_point.append(i)
pnt_file = open(str(file_name)+".pts", "w")
pre_txt = ["version: 1 \n", "n_points: 68 \n", "{ \n"]
pnt_file.writelines(pre_txt)
points_txt = ""
for i in range(0, len(im_lbl_point), 2):
points_txt += str(im_lbl_point[i]) + " " + str(im_lbl_point[i+1]) + "\n"
pnt_file.writelines(points_txt)
pnt_file.write("} \n")
pnt_file.close()
'''crop data: we add a small margin to the images'''
xy_points, x_points, y_points = self.create_landmarks(landmarks=im_lbl_point,
scale_factor_x=1, scale_factor_y=1)
img_arr, points_arr = self.cropImg(img_arr, x_points, y_points)
'''resize image to 224*224'''
resized_img = resize(img_arr,
(224, 224, 3),
anti_aliasing=True)
dims = img_arr.shape
height = dims[0]
width = dims[1]
scale_factor_y = 224 / height
scale_factor_x = 224 / width
'''rescale and retrieve landmarks'''
landmark_arr_xy, landmark_arr_x, landmark_arr_y = \
self.create_landmarks(landmarks=points_arr,
scale_factor_x=scale_factor_x,
scale_factor_y=scale_factor_y)
im = Image.fromarray((resized_img * 255).astype(np.uint8))
im.save(str(im_lbl_point[0])+'.jpg')
# self.print_image_arr(im_lbl_point[0], resized_img, landmark_arr_x, landmark_arr_y)
def augment(self, _image, _label, num_of_landmarks):
# face = misc.face(gray=True)
#
# rotate_face = ndimage.rotate(_image, 45)
# self.print_image_arr(_label[0], rotate_face, [],[])
# hue_img = tf.image.random_hue(_image, max_delta=0.1) # max_delta must be in the interval [0, 0.5].
# sat_img = tf.image.random_saturation(hue_img, lower=0.0, upper=3.0)
#
# sat_img = K.eval(sat_img)
#
_image = self.__noisy(_image)
shear = 0
# rot = 0.0
'''this scale has problem'''
# scale = (random.uniform(0.8, 1.00), random.uniform(0.8, 1.00))
scale = (1, 1)
rot = np.random.uniform(-1 * 0.008, 0.008)
tform = AffineTransform(scale=scale, rotation=rot, shear=shear,
translation=(0, 0))
output_img = warp(_image, tform.inverse, output_shape=(_image.shape[0], _image.shape[1]))
sx, sy = scale
t_matrix = np.array([
[sx * math.cos(rot), -sy * math.sin(rot + shear), 0],
[sx * math.sin(rot), sy * math.cos(rot + shear), 0],
[0, 0, 1]
])
landmark_arr_xy, landmark_arr_x, landmark_arr_y = self.create_landmarks(_label, 1, 1)
label = np.array(landmark_arr_x + landmark_arr_y).reshape([2, num_of_landmarks])
marging = np.ones([1, num_of_landmarks])
label = np.concatenate((label, marging), axis=0)
label_t = np.dot(t_matrix, label)
lbl_flat = np.delete(label_t, 2, axis=0).reshape([num_of_landmarks*2])
t_label = self.__reorder(lbl_flat, num_of_landmarks)
return t_label, output_img
def __noisy(self, image):
noise_typ = random.randint(0, 5)
# if True or noise_typ == 0 :#"gauss":
# row, col, ch = image.shape
# mean = 0
# var = 0.001
# sigma = var ** 0.1
# gauss = np.random.normal(mean, sigma, (row, col, ch))
# gauss = gauss.reshape(row, col, ch)
# noisy = image + gauss
# return noisy
if 1 <= noise_typ <= 2:# "s&p":
row, col, ch = image.shape
s_vs_p = 0.5
amount = 0.04
out = np.copy(image)
# Salt mode
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt))
for i in image.shape]
out[coords] = 1
# Pepper mode
num_pepper = np.ceil(amount * image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper))
for i in image.shape]
out[coords] = 0
return out
# elif 5 <=noise_typ <= 7: #"speckle":
# row, col, ch = image.shape
# gauss = np.random.randn(row, col, ch)
# gauss = gauss.reshape(row, col, ch)
# noisy = image + image * gauss
# return noisy
else:
return image
def __reorder(self, input_arr, num_of_landmarks):
out_arr = []
for i in range(num_of_landmarks):
out_arr.append(input_arr[i])
k = num_of_landmarks + i
out_arr.append(input_arr[k])
return np.array(out_arr)
def print_image_arr_heat(self, k, image):
plt.figure()
plt.imshow(image)
implot = plt.imshow(image)
plt.axis('off')
plt.savefig('heat' + str(k) + '.png', bbox_inches='tight')
plt.clf()
def print_image_arr(self, k, image, landmarks_x, landmarks_y):
plt.figure()
plt.imshow(image)
implot = plt.imshow(image)
plt.scatter(x=landmarks_x[:], y=landmarks_y[:], c='black', s=20)
plt.scatter(x=landmarks_x[:], y=landmarks_y[:], c='white', s=15)
plt.axis('off')
plt.savefig('sss' + str(k) + '.png', bbox_inches='tight')
# plt.show()
plt.clf()
def create_landmarks_from_normalized_original_img(self, img, landmarks, width, height, x_center, y_center, x1, y1, scale_x, scale_y):
# landmarks_splited = _landmarks.split(';')
landmark_arr_xy = []
landmark_arr_x = []
landmark_arr_y = []
for j in range(0, len(landmarks), 2):
x = ((x_center - float(landmarks[j]) * width)*scale_x) + x1
y = ((y_center - float(landmarks[j + 1]) * height)*scale_y) + y1
landmark_arr_xy.append(x)
landmark_arr_xy.append(y)
landmark_arr_x.append(x)
landmark_arr_y.append(y)
img = cv2.circle(img, (int(x), int(y)), 2, (255, 14, 74), 2)
img = cv2.circle(img, (int(x), int(y)), 1, (0, 255, 255), 1)
return landmark_arr_xy, landmark_arr_x, landmark_arr_y, img
def create_landmarks_from_normalized(self, landmarks, width, height, x_center, y_center):
# landmarks_splited = _landmarks.split(';')
landmark_arr_xy = []
landmark_arr_x = []
landmark_arr_y = []
for j in range(0, len(landmarks), 2):
x = x_center - float(landmarks[j]) * width
y = y_center - float(landmarks[j + 1]) * height
landmark_arr_xy.append(x)
landmark_arr_xy.append(y) # [ x1, y1, x2,y2 ]
landmark_arr_x.append(x) # [x1, x2]
landmark_arr_y.append(y) # [y1, y2]
return landmark_arr_xy, landmark_arr_x, landmark_arr_y
def create_landmarks(self, landmarks, scale_factor_x, scale_factor_y):
# landmarks_splited = _landmarks.split(';')
landmark_arr_xy = []
landmark_arr_x = []
landmark_arr_y = []
for j in range(0, len(landmarks), 2):
x = float(landmarks[j]) * scale_factor_x
y = float(landmarks[j + 1]) * scale_factor_y
landmark_arr_xy.append(x)
landmark_arr_xy.append(y) # [ x1, y1, x2,y2 ]
landmark_arr_x.append(x) # [x1, x2]
landmark_arr_y.append(y) # [y1, y2]
return landmark_arr_xy, landmark_arr_x, landmark_arr_y
def create_landmarks_aflw(self, landmarks, scale_factor_x, scale_factor_y):
# landmarks_splited = _landmarks.split(';')
landmark_arr_xy = []
landmark_arr_x = []
landmark_arr_y = []
for j in range(0, len(landmarks), 2):
if landmarks[j][0] == 1:
x = float(landmarks[j][1]) * scale_factor_x
y = float(landmarks[j][2]) * scale_factor_y
landmark_arr_xy.append(x)
landmark_arr_xy.append(y) # [ x1, y1, x2,y2 ]
landmark_arr_x.append(x) # [x1, x2]
landmark_arr_y.append(y) # [y1, y2]
return landmark_arr_xy, landmark_arr_x, landmark_arr_y
def random_augmentation(self, lbl, img, number_of_landmark):
# a = random.randint(0, 2)
# if a == 0:
# img, lbl = self.__add_margin(img, img.shape[0], lbl)
'''this function has problem!!!'''
# img, lbl = self.__add_margin(img, img.shape[0], lbl)
# else:
# img, lbl = self.__negative_crop(img, lbl)
# i = random.randint(0, 2)
# if i == 0:
# img, lbl = self.__rotate(img, lbl, 90, img.shape[0], img.shape[1])
# elif i == 1:
# img, lbl = self.__rotate(img, lbl, 180, img.shape[0], img.shape[1])
# else:
# img, lbl = self.__rotate(img, lbl, 270, img.shape[0], img.shape[1])
# k = random.randint(0, 3)
# if k > 0:
# img = self.__change_color(img)
#
img = self.__noisy(img)
lbl = np.reshape(lbl, [number_of_landmark*2])
return lbl, img
def cropImg_2time(self, img, x_s, y_s):
min_x = max(0, int(min(x_s) - 100))
max_x = int(max(x_s) + 100)
min_y = max(0, int(min(y_s) - 100))
max_y = int(max(y_s) + 100)
crop = img[min_y:max_y, min_x:max_x]
new_x_s = []
new_y_s = []
new_xy_s = []
for i in range(len(x_s)):
new_x_s.append(x_s[i] - min_x)
new_y_s.append(y_s[i] - min_y)
new_xy_s.append(x_s[i] - min_x)
new_xy_s.append(y_s[i] - min_y)
return crop, new_xy_s
def cropImg(self, img, x_s, y_s, no_padding=False):
margin1 = random.randint(0, 10)
margin2 = random.randint(0, 10)
margin3 = random.randint(0, 10)
margin4 = random.randint(0, 10)
if no_padding:
min_x = max(0, int(min(x_s)))
max_x = int(max(x_s))
min_y = max(0, int(min(y_s)))
max_y = int(max(y_s))
else:
min_x = max(0, int(min(x_s) - margin1))
max_x = int(max(x_s) + margin2)
min_y = max(0, int(min(y_s) - margin3))
max_y = int(max(y_s) + margin4)
crop = img[min_y:max_y, min_x:max_x]
new_x_s = []
new_y_s = []
new_xy_s = []
for i in range(len(x_s)):
new_x_s.append(x_s[i] - min_x)
new_y_s.append(y_s[i] - min_y)
new_xy_s.append(x_s[i] - min_x)
new_xy_s.append(y_s[i] - min_y)
# imgpr.print_image_arr(k, crop, new_x_s, new_y_s)
# imgpr.print_image_arr_2(i, img, x_s, y_s, [min_x, max_x], [min_y, max_y])
return crop, new_xy_s
def __negative_crop(self, img, landmarks):
landmark_arr_xy, x_s, y_s = self.create_landmarks(landmarks, 1, 1)
min_x = img.shape[0] // random.randint(5, 15)
max_x = img.shape[0] - (img.shape[0] // random.randint(15, 20))
min_y = img.shape[0] // random.randint(5, 15)
max_y = img.shape[0] - (img.shape[0] // random.randint(15, 20))
crop = img[min_y:max_y, min_x:max_x]
new_x_s = []
new_y_s = []
new_xy_s = []
for i in range(len(x_s)):
new_x_s.append(x_s[i] - min_x)
new_y_s.append(y_s[i] - min_y)
new_xy_s.append(x_s[i] - min_x)
new_xy_s.append(y_s[i] - min_y)
# imgpr.print_image_arr(crop.shape[0], crop, new_x_s, new_y_s)
# imgpr.print_image_arr_2(crop.shape[0], crop, x_s, y_s, [min_x, max_x], [min_y, max_y])
return crop, new_xy_s
def __add_margin(self, img, img_w, lbl):
marging_width = img_w // random.randint(15, 20)
direction = random.randint(0, 4)
if direction == 1:
margings = np.random.random([img_w, int(marging_width), 3])
img = np.concatenate((img, margings), axis=1)
if direction == 2:
margings_1 = np.random.random([img_w, int(marging_width), 3])
img = np.concatenate((img, margings_1), axis=1)
marging_width_1 = img_w // random.randint(15, 20)
margings_2 = np.random.random([int(marging_width_1), img_w + int(marging_width), 3])
img = np.concatenate((img, margings_2), axis=0)
if direction == 3: # need chane labels
margings_1 = np.random.random([img_w, int(marging_width), 3])
img = np.concatenate((margings_1, img), axis=1)
lbl = self.__transfer_lbl(int(marging_width), lbl, [1, 0])
marging_width_1 = img_w // random.randint(15, 20)
margings_2 = np.random.random([int(marging_width_1), img_w + int(marging_width), 3])
img = np.concatenate((margings_2, img), axis=0)
lbl = self.__transfer_lbl(int(marging_width_1), lbl, [0, 1])
if direction == 4: # need chane labels
margings_1 = np.random.random([img_w, int(marging_width), 3])
img = np.concatenate((margings_1, img), axis=1)
lbl = self.__transfer_lbl(int(marging_width), lbl, [1, 0])
img_w1 = img_w + int(marging_width)
marging_width_1 = img_w // random.randint(15, 20)
margings_2 = np.random.random([int(marging_width_1), img_w1, 3])
img = np.concatenate((margings_2, img), axis=0)
lbl = self.__transfer_lbl(int(marging_width_1), lbl, [0, 1])
img_w2 = img_w + int(marging_width_1)
marging_width_1 = img_w // random.randint(15, 20)
margings_1 = np.random.random([img_w2, int(marging_width_1), 3])
img = np.concatenate((img, margings_1), axis=1)
marging_width_1 = img_w // random.randint(15, 20)
margings_2 = np.random.random([int(marging_width_1), img.shape[1], 3])
img = np.concatenate((img, margings_2), axis=0)
return img, lbl
def __void_image(self, img, img_w, ):
marging_width = int(img_w / random.randint(7, 16))
direction = random.randint(0, 1)
direction = 0
if direction == 0:
np.delete(img, 100, 1)
# img[:, 0:marging_width, :] = 0
elif direction == 1:
img[img_w - marging_width:img_w, :, :] = 0
if direction == 2:
img[:, img_w - marging_width:img_w, :] = 0
return img
def __change_color(self, img):
# color_arr = np.random.random([img.shape[0], img.shape[1]])
color_arr = np.zeros([img.shape[0], img.shape[1]])
axis = random.randint(0, 4)
if axis == 0: # red
img_mono = img[:, :, 0]
new_img = np.stack([img_mono, color_arr, color_arr], axis=2)
elif axis == 1: # green
img_mono = img[:, :, 1]
new_img = np.stack([color_arr, img_mono, color_arr], axis=2)
elif axis == 2: # blue
img_mono = img[:, :, 1]
new_img = np.stack([color_arr, img_mono, color_arr], axis=2)
elif axis == 3: # gray scale
img_mono = img[:, :, 0]
new_img = np.stack([img_mono, img_mono, img_mono], axis=2)
else: # random noise
color_arr = np.random.random([img.shape[0], img.shape[1]])
img_mono = img[:, :, 0]
new_img = np.stack([img_mono, img_mono, color_arr], axis=2)
return new_img
def __rotate_origin_only(self, xy_arr, radians, xs, ys):
"""Only rotate a point around the origin (0, 0)."""
rotated = []
for xy in xy_arr:
x, y = xy
xx = x * math.cos(radians) + y * math.sin(radians)
yy = -x * math.sin(radians) + y * math.cos(radians)
rotated.append([xx + xs, yy + ys])
return np.array(rotated)
def __rotate(self, img, landmark_old, degree, img_w, img_h, num_of_landmarks):
landmark_old = np.reshape(landmark_old, [num_of_landmarks, 2])
theta = math.radians(degree)
if degree == 90:
landmark = self.__rotate_origin_only(landmark_old, theta, 0, img_h)
return np.rot90(img, 3, axes=(-2, 0)), landmark
elif degree == 180:
landmark = self.__rotate_origin_only(landmark_old, theta, img_h, img_w)
return np.rot90(img, 2, axes=(-2, 0)), landmark
elif degree == 270:
landmark = self.__rotate_origin_only(landmark_old, theta, img_w, 0)
return np.rot90(img, 1, axes=(-2, 0)), landmark
def __transfer_lbl(self, marging_width_1, lbl, axis_arr):
new_lbl = []
for i in range(0, len(lbl), 2):
new_lbl.append(lbl[i] + marging_width_1 * axis_arr[0])
new_lbl.append(lbl[i + 1] + marging_width_1 * axis_arr[1])
return np.array(new_lbl)