--- language: - en datasets: - alinet/balanced_qg model-index: - name: alinet/bart-base-balanced-qg results: - task: type: text2text-generation name: Question Generation dataset: name: MRQA type: mrqa metrics: - type: bertscore value: 0.6579994835741414 name: BERTScore F1 - type: bertscore value: 0.6617731395187654 name: BERTScore Precision - type: bertscore value: 0.6576008430831539 name: BERTScore Recall - task: type: text2text-generation name: Question Generation dataset: name: Spoken-SQuAD type: alinet/spoken_squad metrics: - type: bertscore value: 0.6005104740534271 name: BERTScore F1 - type: bertscore value: 0.5973629577263946 name: BERTScore Precision - type: bertscore value: 0.6071276199638798 name: BERTScore Recall --- A question generation model trained on `alinet/balanced_qg` dataset. Example usage: ```py from transformers import BartConfig, BartForConditionalGeneration, BartTokenizer model_name = "alinet/bart-base-balanced-qg" tokenizer = BartTokenizer.from_pretrained(model_name) model = BartForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) run_model("Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.", max_length=32, num_beams=4) # ['What is the Stanford Question Answering Dataset?'] ```