Alfonso Velasco commited on
Commit
e05cc99
2 Parent(s): 860b276 50be29e

Merge branch 'main' of hf.co:alfonsovelp/lynk-finetuned-mini

Browse files
Files changed (1) hide show
  1. README.md +3 -84
README.md CHANGED
@@ -1,91 +1,10 @@
1
  ---
2
- pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
  - sentence-similarity
7
-
8
  ---
9
 
10
- # {MODEL_NAME}
11
-
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
-
14
- <!--- Describe your model here -->
15
-
16
- ## Usage (Sentence-Transformers)
17
-
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
-
20
- ```
21
- pip install -U sentence-transformers
22
- ```
23
-
24
- Then you can use the model like this:
25
-
26
- ```python
27
- from sentence_transformers import SentenceTransformer
28
- sentences = ["This is an example sentence", "Each sentence is converted"]
29
-
30
- model = SentenceTransformer('{MODEL_NAME}')
31
- embeddings = model.encode(sentences)
32
- print(embeddings)
33
- ```
34
-
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
- ## Training
45
- The model was trained with the parameters:
46
-
47
- **DataLoader**:
48
-
49
- `torch.utils.data.dataloader.DataLoader` of length 4550 with parameters:
50
- ```
51
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
- ```
53
-
54
- **Loss**:
55
-
56
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
57
- ```
58
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
59
- ```
60
-
61
- Parameters of the fit()-Method:
62
- ```
63
- {
64
- "epochs": 10,
65
- "evaluation_steps": 50,
66
- "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
67
- "max_grad_norm": 1,
68
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
69
- "optimizer_params": {
70
- "lr": 2e-05
71
- },
72
- "scheduler": "WarmupLinear",
73
- "steps_per_epoch": null,
74
- "warmup_steps": 4550,
75
- "weight_decay": 0.01
76
- }
77
- ```
78
-
79
-
80
- ## Full Model Architecture
81
- ```
82
- SentenceTransformer(
83
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
84
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
85
- (2): Normalize()
86
- )
87
- ```
88
-
89
- ## Citing & Authors
90
 
91
- <!--- Describe where people can find more information -->
 
1
  ---
2
+ pipeline_tag: feature-extraction
3
  tags:
4
  - sentence-transformers
 
5
  - sentence-similarity
 
6
  ---
7
 
8
+ # {Lynk Finetuned Mini}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.