alfonsovelp commited on
Commit
9cf0318
1 Parent(s): 1c6a6b3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -81
README.md CHANGED
@@ -5,85 +5,6 @@ tags:
5
  - sentence-similarity
6
  ---
7
 
8
- # {MODEL_NAME}
9
 
10
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
11
-
12
- <!--- Describe your model here -->
13
-
14
- ## Usage (Sentence-Transformers)
15
-
16
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
17
-
18
- ```
19
- pip install -U sentence-transformers
20
- ```
21
-
22
- Then you can use the model like this:
23
-
24
- ```python
25
- from sentence_transformers import SentenceTransformer
26
- sentences = ["This is an example sentence", "Each sentence is converted"]
27
-
28
- model = SentenceTransformer('{MODEL_NAME}')
29
- embeddings = model.encode(sentences)
30
- print(embeddings)
31
- ```
32
-
33
-
34
-
35
- ## Evaluation Results
36
-
37
- <!--- Describe how your model was evaluated -->
38
-
39
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
40
-
41
-
42
- ## Training
43
- The model was trained with the parameters:
44
-
45
- **DataLoader**:
46
-
47
- `torch.utils.data.dataloader.DataLoader` of length 4550 with parameters:
48
- ```
49
- {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
50
- ```
51
-
52
- **Loss**:
53
-
54
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
55
- ```
56
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
57
- ```
58
-
59
- Parameters of the fit()-Method:
60
- ```
61
- {
62
- "epochs": 10,
63
- "evaluation_steps": 50,
64
- "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
65
- "max_grad_norm": 1,
66
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
67
- "optimizer_params": {
68
- "lr": 2e-05
69
- },
70
- "scheduler": "WarmupLinear",
71
- "steps_per_epoch": null,
72
- "warmup_steps": 4550,
73
- "weight_decay": 0.01
74
- }
75
- ```
76
-
77
-
78
- ## Full Model Architecture
79
- ```
80
- SentenceTransformer(
81
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
82
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
83
- (2): Normalize()
84
- )
85
- ```
86
-
87
- ## Citing & Authors
88
-
89
- <!--- Describe where people can find more information -->
 
5
  - sentence-similarity
6
  ---
7
 
8
+ # {Lynk Finetuned Mini}
9
 
10
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.