Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Classifier to check if two sequences are paraphrase or not
|
2 |
+
|
3 |
+
Trained based on ruBert by DeepPavlov.
|
4 |
+
|
5 |
+
Use this way:
|
6 |
+
```
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import os
|
10 |
+
import copy
|
11 |
+
import random
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from torch.utils.data import DataLoader, Dataset
|
15 |
+
from torch.cuda.amp import autocast, GradScaler
|
16 |
+
from tqdm import tqdm
|
17 |
+
from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup
|
18 |
+
|
19 |
+
from transformers.file_utils import (
|
20 |
+
cached_path,
|
21 |
+
hf_bucket_url,
|
22 |
+
is_remote_url,
|
23 |
+
)
|
24 |
+
|
25 |
+
archive_file = hf_bucket_url(
|
26 |
+
"alenusch/par_cls_bert",
|
27 |
+
filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt",
|
28 |
+
revision=None,
|
29 |
+
mirror=None,
|
30 |
+
)
|
31 |
+
resolved_archive_file = cached_path(
|
32 |
+
archive_file,
|
33 |
+
cache_dir=None,
|
34 |
+
force_download=False,
|
35 |
+
proxies=None,
|
36 |
+
resume_download=False,
|
37 |
+
local_files_only=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
41 |
+
|
42 |
+
class SentencePairClassifier(nn.Module):
|
43 |
+
|
44 |
+
def __init__(self, bert_model):
|
45 |
+
super(SentencePairClassifier, self).__init__()
|
46 |
+
self.bert_layer = AutoModel.from_pretrained(bert_model)
|
47 |
+
self.cls_layer = nn.Linear(768, 1)
|
48 |
+
self.dropout = nn.Dropout(p=0.1)
|
49 |
+
|
50 |
+
@autocast()
|
51 |
+
def forward(self, input_ids, attn_masks, token_type_ids):
|
52 |
+
cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False)
|
53 |
+
logits = self.cls_layer(self.dropout(pooler_output))
|
54 |
+
return logits
|
55 |
+
|
56 |
+
class CustomDataset(Dataset):
|
57 |
+
|
58 |
+
def __init__(self, data, maxlen, bert_model):
|
59 |
+
|
60 |
+
self.data = data
|
61 |
+
self.tokenizer = AutoTokenizer.from_pretrained(bert_model)
|
62 |
+
self.maxlen = maxlen
|
63 |
+
self.targets = False
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.data)
|
67 |
+
|
68 |
+
def __getitem__(self, index):
|
69 |
+
sent1 = str(self.data[index][0])
|
70 |
+
sent2 = str(self.data[index][1])
|
71 |
+
encoded_pair = self.tokenizer(sent1, sent2,
|
72 |
+
padding='max_length', # Pad to max_length
|
73 |
+
truncation=True, # Truncate to max_length
|
74 |
+
max_length=self.maxlen,
|
75 |
+
return_tensors='pt') # Return torch.Tensor objects
|
76 |
+
|
77 |
+
token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids
|
78 |
+
attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values
|
79 |
+
token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens
|
80 |
+
|
81 |
+
return token_ids, attn_masks, token_type_ids
|
82 |
+
|
83 |
+
def get_probs_from_logits(logits):
|
84 |
+
probs = torch.sigmoid(logits.unsqueeze(-1))
|
85 |
+
return probs.detach().cpu().numpy()
|
86 |
+
|
87 |
+
def test_prediction(net, device, dataloader, with_labels=False):
|
88 |
+
net.eval()
|
89 |
+
probs_all = []
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
for seq, attn_masks, token_type_ids in tqdm(dataloader):
|
93 |
+
seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device)
|
94 |
+
logits = net(seq, attn_masks, token_type_ids)
|
95 |
+
probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1)
|
96 |
+
probs_all += probs.tolist()
|
97 |
+
return probs_all
|
98 |
+
|
99 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
100 |
+
cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert")
|
101 |
+
if torch.cuda.device_count() > 1:
|
102 |
+
cls_model = nn.DataParallel(model)
|
103 |
+
|
104 |
+
cls_model.load_state_dict(torch.load(resolved_archive_file))
|
105 |
+
cls_model.to(device)
|
106 |
+
|
107 |
+
variants = [["sentence1", "sentence2"]]
|
108 |
+
test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert")
|
109 |
+
test_loader = DataLoader(test_set, batch_size=16, num_workers=5)
|
110 |
+
res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False)
|
111 |
+
|
112 |
+
```
|