--- license: gemma base_model: google/gemma-2b tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/deita-10k-v0-sft model-index: - name: zephyr-2b-gemma-sft results: [] --- [Visualize in Weights & Biases](https://zebra.wandb.io/cto/distillm/runs/38yxv4re) # zephyr-2b-gemma-sft This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the HuggingFaceH4/deita-10k-v0-sft dataset. It achieves the following results on the evaluation set: - Loss: 1.0529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9699 | 0.9983 | 299 | 1.0448 | | 0.8939 | 2.0 | 599 | 1.0375 | | 0.8191 | 2.9950 | 897 | 1.0529 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1