File size: 13,182 Bytes
3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 3f96a16 881b143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import math
import warnings
from collections.abc import Sequence
from functools import partial
from typing import Any, Callable, Optional, Tuple, Union
import torch
from torch import nn
from .fc import FC_CLASS_REGISTRY
from .norm import NORM_CLASS_REGISTRY
try:
import transformer_engine.pytorch as te
except:
te = None
def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
del kwargs
if hasattr(module, "reset_parameters") and isinstance(
module.reset_parameters, Callable
):
module.reset_parameters()
def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
_fused = getattr(module, "_fused", None)
if _fused is None:
raise RuntimeError(f"Internal logic error")
assert isinstance(module.weight, torch.Tensor)
(dim, splits) = _fused
splits = (0, *splits, module.weight.size(dim))
for s, e in zip(splits[:-1], splits[1:]):
slice_indices = [slice(None)] * module.weight.ndim
slice_indices[dim] = slice(s, e)
init_fn_(module.weight[slice_indices])
def generic_param_init_fn_(
module: nn.Module,
init_fn_: Callable,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
**kwargs: Any,
) -> None:
del kwargs
init_div_is_residual = init_div_is_residual
if init_div_is_residual is False:
div_is_residual = 1.0
elif init_div_is_residual is True:
div_is_residual = math.sqrt(2 * n_layers)
elif isinstance(init_div_is_residual, float) or isinstance(
init_div_is_residual, int
):
div_is_residual = init_div_is_residual
elif init_div_is_residual.isnumeric():
div_is_residual = float(init_div_is_residual)
else:
div_is_residual = 1.0
raise ValueError(
f"Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}"
)
if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
if hasattr(module, "_fused"):
fused_init_helper_(module, init_fn_)
else:
init_fn_(module.weight)
if module.bias is not None:
assert isinstance(module.bias, torch.Tensor)
torch.nn.init.zeros_(module.bias)
if init_div_is_residual is not False and getattr(module, "_is_residual", False):
with torch.no_grad():
module.weight.div_(div_is_residual)
elif isinstance(module, nn.Embedding):
if emb_init_std is not None:
std = emb_init_std
if std == 0:
warnings.warn(f"Embedding layer initialized to 0.")
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
elif emb_init_uniform_lim is not None:
lim = emb_init_uniform_lim
if isinstance(lim, Sequence):
if len(lim) > 2:
raise ValueError(
f"Uniform init requires a min and a max limit. User input: {lim}."
)
if lim[0] == lim[1]:
warnings.warn(f"Embedding layer initialized to {lim[0]}.")
else:
if lim == 0:
warnings.warn(f"Embedding layer initialized to 0.")
lim = [-lim, lim]
(a, b) = lim
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
else:
emb_init_fn_ = init_fn_
emb_init_fn_(module.weight)
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
if hasattr(module, "weight") and isinstance(module.weight, torch.Tensor):
torch.nn.init.ones_(module.weight)
if hasattr(module, "bias") and isinstance(module.bias, torch.Tensor):
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.MultiheadAttention):
if module._qkv_same_embed_dim:
assert module.in_proj_weight is not None
assert (
module.q_proj_weight is None
and module.k_proj_weight is None
and (module.v_proj_weight is None)
)
assert d_model is not None
_d = d_model
splits = (0, _d, 2 * _d, 3 * _d)
for s, e in zip(splits[:-1], splits[1:]):
init_fn_(module.in_proj_weight[s:e])
else:
assert (
module.q_proj_weight is not None
and module.k_proj_weight is not None
and (module.v_proj_weight is not None)
)
assert module.in_proj_weight is None
init_fn_(module.q_proj_weight)
init_fn_(module.k_proj_weight)
init_fn_(module.v_proj_weight)
if module.in_proj_bias is not None:
torch.nn.init.zeros_(module.in_proj_bias)
if module.bias_k is not None:
torch.nn.init.zeros_(module.bias_k)
if module.bias_v is not None:
torch.nn.init.zeros_(module.bias_v)
init_fn_(module.out_proj.weight)
if init_div_is_residual is not False and getattr(
module.out_proj, "_is_residual", False
):
with torch.no_grad():
module.out_proj.weight.div_(div_is_residual)
if module.out_proj.bias is not None:
torch.nn.init.zeros_(module.out_proj.bias)
elif te is not None and isinstance(module, te.LayerNormMLP):
if isinstance(module.layer_norm_weight, torch.Tensor):
torch.nn.init.ones_(module.layer_norm_weight)
if isinstance(module.layer_norm_bias, torch.Tensor):
torch.nn.init.zeros_(module.layer_norm_bias)
init_fn_(module.fc1_weight)
if module.fc1_bias is not None:
assert isinstance(module.fc1_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc1_bias)
init_fn_(module.fc2_weight)
if module.fc2_bias is not None:
assert isinstance(module.fc2_bias, torch.Tensor)
torch.nn.init.zeros_(module.fc2_bias)
with torch.no_grad():
module.fc2_weight.div_(div_is_residual)
else:
for _ in module.parameters(recurse=False):
raise NotImplementedError(
f"{module.__class__.__name__} parameters are not initialized by param_init_fn."
)
def _normal_init_(std: float, mean: float = 0.0) -> Callable:
return partial(torch.nn.init.normal_, mean=mean, std=std)
def _normal_param_init_fn_(
module: nn.Module,
std: float,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
**kwargs: Any,
) -> None:
del kwargs
init_fn_ = _normal_init_(std=std)
generic_param_init_fn_(
module=module,
init_fn_=init_fn_,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def baseline_param_init_fn_(
module: nn.Module,
init_std: Optional[float],
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
**kwargs: Any,
) -> None:
del kwargs
if init_std is None:
raise ValueError(
"You must set model.init_config['init_std'] to a float value to use the default initialization scheme."
)
_normal_param_init_fn_(
module=module,
std=init_std,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def small_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: int,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
**kwargs: Any,
) -> None:
del kwargs
std = math.sqrt(2 / (5 * d_model))
_normal_param_init_fn_(
module=module,
std=std,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def neox_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: int,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
**kwargs: Any,
) -> None:
"""From section 2.3.1 of GPT-NeoX-20B:
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
"""
del kwargs
residual_div = n_layers / math.sqrt(10)
small_param_init_fn_(
module=module,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=residual_div,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def kaiming_uniform_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
init_gain: float = 0,
fan_mode: str = "fan_in",
init_nonlinearity: str = "leaky_relu",
**kwargs: Any,
) -> None:
del kwargs
kaiming_uniform_ = partial(
nn.init.kaiming_uniform_,
a=init_gain,
mode=fan_mode,
nonlinearity=init_nonlinearity,
)
generic_param_init_fn_(
module=module,
init_fn_=kaiming_uniform_,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def kaiming_normal_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
init_gain: float = 0,
fan_mode: str = "fan_in",
init_nonlinearity: str = "leaky_relu",
**kwargs: Any,
) -> None:
del kwargs
kaiming_normal_ = partial(
torch.nn.init.kaiming_normal_,
a=init_gain,
mode=fan_mode,
nonlinearity=init_nonlinearity,
)
generic_param_init_fn_(
module=module,
init_fn_=kaiming_normal_,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def xavier_uniform_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
init_gain: float = 0,
**kwargs: Any,
) -> None:
del kwargs
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
generic_param_init_fn_(
module=module,
init_fn_=xavier_uniform_,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
def xavier_normal_param_init_fn_(
module: nn.Module,
n_layers: int,
d_model: Optional[int] = None,
init_div_is_residual: Union[int, float, str, bool] = True,
emb_init_std: Optional[float] = None,
emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None,
init_gain: float = 0,
**kwargs: Any,
) -> None:
del kwargs
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
generic_param_init_fn_(
module=module,
init_fn_=xavier_normal_,
d_model=d_model,
n_layers=n_layers,
init_div_is_residual=init_div_is_residual,
emb_init_std=emb_init_std,
emb_init_uniform_lim=emb_init_uniform_lim,
)
MODEL_INIT_REGISTRY = {
"default_": torch_default_param_init_fn_,
"baseline_": baseline_param_init_fn_,
"kaiming_uniform_": kaiming_uniform_param_init_fn_,
"kaiming_normal_": kaiming_normal_param_init_fn_,
"neox_init_": neox_param_init_fn_,
"small_init_": small_param_init_fn_,
"xavier_uniform_": xavier_uniform_param_init_fn_,
"xavier_normal_": xavier_normal_param_init_fn_,
}
|