--- library_name: transformers license: apache-2.0 datasets: - TokenBender/code_instructions_122k_alpaca_style - nickrosh/Evol-Instruct-Code-80k-v1 metrics: - accuracy language: - en widget: - text: | ### Instruction: write a neural network complete code in Keras ### Input: Use cifar dataset ### Response: output: text: >- from keras.datasets import cifar10 import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.utils import to_categorical from keras.optimizers import Adam # Load the CIFAR-10 dataset (X_train, y_train), (X_test, y_test) = cifar10.load_data() # Normalize pixel values to be between 0 and 1 X_train = X_train.astype('float32') / 255 X_test = X_test.astype('float32') / 255 # Convert class vectors to binary class matrices y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # Create the model model = Sequential() model.add(Conv2D(32, (3, 3), input_shape=(32, 32, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(10)) model.add(Activation('softmax')) # Compile the model model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=['accuracy']) # Train the model model.fit(X_train, y_train, batch_size=32, epochs=10, validation_split=0.2) pipeline_tag: text-generation base_model: codellama/CodeLlama-13b-Instruct-hf ---

Panda-Coder 🐼

# Panda Coder-13B vLLM Inference: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1yP-11PWqLrDn5ymKDWMfz9r6jLpTcTAH?usp=sharing) ![Opensource L.png](https://cdn-uploads.huggingface.co/production/uploads/630f3058236215d0b7078806/BmrdSXe_vZUNxTHopwd3M.png) Panda Coder is a state-of-the-art LLM capable of generating code on the NLP based Instructions ## Model description 🤖 Model Description: Panda-Coder is a state-of-the-art LLM, a fine-tuned model, specifically designed to generate code based on natural language instructions. It's the result of relentless innovation and meticulous fine-tuning, all to make coding easier and more accessible for everyone. ## Inference > Hardware requirements: > > 30GB VRAM - A100 Preferred ### vLLM - For Faster Inference #### Installation ``` !pip install vllm ``` **Implementation**: ```python from vllm import LLM, SamplingParams llm = LLM(model='aiplanet/panda-coder-13B',gpu_memory_utilization=0.95,max_model_len=4096) prompts = [""" ### Instruction: Write a Java code to add 15 numbers randomly generated. ### Input: [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] ### Response: """, "### Instruction: write a neural network complete code in Keras ### Input: Use cifar dataset ### Response:" ] sampling_params = SamplingParams(temperature=0.1, top_p=0.95,repetition_penalty = 1.1,max_tokens=1000) outputs = llm.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(generated_text) print("\n\n") ``` ### Transformers - Basic Implementation ```python import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments,BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = "aiplanet/panda-coder-13B" base_model = AutoModelForCausalLM.from_pretrained(model, quantization_config=bnb_config, device_map="cuda") tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" prompt = f"""### Instruction: Below is an instruction that describes a task. Write a response that appropriately completes the request. Write a Python quickstart script to get started with TensorFlow ### Input: ### Response: """ input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda() outputs = base_model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, top_p=0.9,temperature=0.1,repetition_penalty=1.1) print(f"Output:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}") ``` Output ```bash Output: import tensorflow as tf # Create a constant tensor hello_constant = tf.constant('Hello, World!') # Print the value of the constant print(hello_constant) ``` ## Prompt Template for Panda Coder 13B ``` ### Instruction: {} ### Input: {} ### Response: ``` ## 🔗 Key Features: 🌟 NLP-Based Coding: With Panda-Coder, you can transform your plain text instructions into functional code effortlessly. No need to grapple with syntax and semantics - it understands your language. 🎯 Precision and Efficiency: The model is tailored for accuracy, ensuring your code is not just functional but also efficient. ✨ Unleash Creativity: Whether you're a novice or an expert coder, Panda-Coder is here to support your coding journey, offering creative solutions to your programming challenges. 📚 Evol Instruct Code: It's built on the robust Evol Instruct Code 80k-v1 dataset, guaranteeing top-notch code generation. 📢 What's Next?: We believe in continuous improvement and are excited to announce that in our next release, Panda-Coder will be enhanced with a custom dataset. This dataset will not only expand the language support but also include hardware programming languages like MATLAB, Embedded C, and Verilog. 🧰💡 ## Get in Touch You can schedule 1:1 meeting with our DevRel & Community Team to get started with AI Planet Open Source LLMs and GenAI Stack. Schedule the call here: [https://calendly.com/jaintarun](https://calendly.com/jaintarun) Stay tuned for more updates and be a part of the coding evolution. Join us on this exciting journey as we make AI accessible to all at AI Planet! ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3 ### Citation ``` @misc {lucifertrj, author = { {Tarun Jain} }, title = { Panda Coder-13B by AI Planet}, year = 2023, url = { https://huggingface.co/aiplanet/panda-coder-13B }, publisher = { Hugging Face } } ```