jaintarunAI commited on
Commit
cefd69e
0 Parent(s):

initial model push

Browse files
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ ---
5
+
6
+ <p align="center" style="font-size:34px;"><b>Buddhi-128K-Chat</b></p>
7
+
8
+ # Buddhi-128K-Chat (7B) vLLM Inference: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)
9
+
10
+ ## Model Description
11
+
12
+ Buddhi-128k-Chat is a general-purpose first chat model with 128K context length window. It is meticulously fine-tuned on the Mistral 7B Instruct, and optimised to handle an extended context length of up to 128,000 tokens using the innovative YaRN (Yet another Rope Extension) Technique. This enhancement allows Buddhi to maintain a deeper understanding of context in long documents or conversations, making it particularly adept at tasks requiring extensive context retention, such as comprehensive document summarization, detailed narrative generation, and intricate question-answering.
13
+
14
+ ## Dataset Creation
15
+
16
+ ## Architecture
17
+
18
+ ### Hardware requirements:
19
+ > For 128k Context Length
20
+ > - 80GB VRAM - A100 Preferred
21
+
22
+ > For 32k Context Length
23
+ > - 40GB VRAM - A100 Preferred
24
+
25
+ ### vLLM - For Faster Inference
26
+
27
+ #### Installation
28
+
29
+ ```
30
+ !pip install vllm
31
+ !pip install flash_attn # If Flash Attention 2 is supported by your System
32
+ ```
33
+ Please check out [Flash Attention 2](https://github.com/Dao-AILab/flash-attention) Github Repository for more instructions on how to Install it.
34
+
35
+ **Implementation**:
36
+
37
+ > Note: The actual hardware requirements to run the model is roughly around 70GB VRAM. For experimentation, we are limiting the context length to 75K instead of 128K. This make it suitable for testing the model in 30-35 GB VRAM
38
+
39
+ ```python
40
+ from vllm import LLM, SamplingParams
41
+
42
+ llm = LLM(
43
+ model='aiplanet/buddhi-128k-chat-7b',
44
+ trust_remote_code=True,
45
+ dtype = 'bfloat16',
46
+ gpu_memory_utilization=1,
47
+ max_model_len= 75000
48
+ )
49
+
50
+ prompts = [
51
+ """<s> [INST] Please tell me a joke. [/INST] """,
52
+ """<s> [INST] What is Machine Learning? [/INST] """
53
+ ]
54
+
55
+ sampling_params = SamplingParams(
56
+ temperature=0.8,
57
+ top_p=0.95,
58
+ max_tokens=1000
59
+ )
60
+
61
+ outputs = llm.generate(prompts, sampling_params)
62
+
63
+ for output in outputs:
64
+ prompt = output.prompt
65
+ generated_text = output.outputs[0].text
66
+ print(generated_text)
67
+ print("\n\n")
68
+
69
+ # we have also attached a colab notebook, that contains: 2 more experimentations: Long Essay and Entire Book
70
+ ```
71
+
72
+ For Output, do check out the colab notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)
73
+
74
+ ### Transformers - Basic Implementation
75
+
76
+ ```python
77
+ import torch
78
+ import transformers
79
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
80
+
81
+ bnb_config = BitsAndBytesConfig(
82
+ load_in_4bit=True,
83
+ bnb_4bit_use_double_quant=True,
84
+ bnb_4bit_quant_type="nf4",
85
+ bnb_4bit_compute_dtype=torch.bfloat16
86
+ )
87
+
88
+ model_name = "aiplanet/Buddhi-128K-Chat"
89
+
90
+ model = AutoModelForCausalLM.from_pretrained(
91
+ model_name,
92
+ quantization_config=bnb_config,
93
+ device_map="sequential",
94
+ trust_remote_code=True
95
+ )
96
+
97
+ tokenizer = AutoTokenizer.from_pretrained(
98
+ model,
99
+ trust_remote_code=True
100
+ )
101
+
102
+ prompt = "<s> [INST] Please tell me a small joke. [/INST] "
103
+
104
+ tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
105
+ outputs = model.generate(
106
+ **tokens,
107
+ max_new_tokens=100,
108
+ do_sample=True,
109
+ top_p=0.95,
110
+ temperature=0.8,
111
+ )
112
+
113
+ decoded_output = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
114
+ print(f"Output:\n{decoded_output[len(prompt):]}")
115
+ ```
116
+
117
+ Output
118
+
119
+ ```
120
+ Output:
121
+ Why don't scientists trust atoms?
122
+
123
+ Because they make up everything.
124
+ ```
125
+
126
+
127
+ ## Prompt Template for Buddi-128-Chat
128
+
129
+ In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
130
+
131
+ ```
132
+ "<s>[INST] What is your favourite condiment? [/INST]"
133
+ "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
134
+ "[INST] Do you have mayonnaise recipes? [/INST]"
135
+
136
+ ```
137
+
138
+ ## Get in Touch
139
+
140
+ You can schedule a 1:1 meeting with our DevRel & Community Team to get started with AI Planet Open Source LLMs and GenAI Stack. Schedule the call here: [https://calendly.com/jaintarun](https://calendly.com/jaintarun)
141
+
142
+ Stay tuned for more updates and be a part of the coding evolution. Join us on this exciting journey as we make AI accessible to all at AI Planet!
143
+
144
+
145
+ ### Framework versions
146
+
147
+ - Transformers 4.39.2
148
+ - Pytorch 2.2.1+cu121
149
+ - Datasets 2.18.0
150
+ - Accelerate 0.27.2
151
+ - flash_attn 2.5.6
152
+
153
+ ### Citation
154
+
155
+ ```
156
+ @misc {Chaitanya890, lucifertrj ,
157
+ author = { Chaitanya Singhal, Tarun Jain },
158
+ title = { Buddhi-128k-Chat by AI Planet},
159
+ year = 2024,
160
+ url = { https://huggingface.co/aiplanet//Buddhi-128K-Chat },
161
+ publisher = { Hugging Face }
162
+ }
163
+ ```
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aiplanet/buddhi-128k-chat-7b",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_mistral.MistralConfig",
9
+ "AutoModelForCausalLM": "modeling_mistral_yarn.MistralForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 14336,
17
+ "max_position_embeddings": 131072,
18
+ "model_type": "mistral",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 8,
22
+ "pad_token_id": 2,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "factor": 4.0,
26
+ "finetuned": true,
27
+ "original_max_position_embeddings": 32768,
28
+ "type": "yarn"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": null,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.39.2",
35
+ "use_cache": true,
36
+ "vocab_size": 32000
37
+ }
configuration_mistral.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Mistral model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
25
+ "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
26
+ }
27
+
28
+
29
+ class MistralConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
32
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
33
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
34
+
35
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
36
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+
42
+ Args:
43
+ vocab_size (`int`, *optional*, defaults to 32000):
44
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
45
+ `inputs_ids` passed when calling [`MistralModel`]
46
+ hidden_size (`int`, *optional*, defaults to 4096):
47
+ Dimension of the hidden representations.
48
+ intermediate_size (`int`, *optional*, defaults to 14336):
49
+ Dimension of the MLP representations.
50
+ num_hidden_layers (`int`, *optional*, defaults to 32):
51
+ Number of hidden layers in the Transformer encoder.
52
+ num_attention_heads (`int`, *optional*, defaults to 32):
53
+ Number of attention heads for each attention layer in the Transformer encoder.
54
+ num_key_value_heads (`int`, *optional*, defaults to 8):
55
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
56
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
57
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
58
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
59
+ by meanpooling all the original heads within that group. For more details checkout [this
60
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
64
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
65
+ allows sequence of up to 4096*32 tokens.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ The id of the padding token.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ The id of the "beginning-of-sequence" token.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ The id of the "end-of-sequence" token.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether the model's input and output word embeddings should be tied.
81
+ rope_scaling (`Dict`, *optional*):
82
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
83
+ strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
84
+ is `{"type": strategy name, "factor": scaling factor}`.
85
+ rope_theta (`float`, *optional*, defaults to 10000.0):
86
+ The base period of the RoPE embeddings.
87
+ sliding_window (`int`, *optional*, defaults to 4096):
88
+ Sliding window attention window size. If not specified, will default to `4096`.
89
+
90
+
91
+ ```python
92
+ >>> from transformers import MistralModel, MistralConfig
93
+
94
+ >>> # Initializing a Mistral 7B style configuration
95
+ >>> configuration = MistralConfig()
96
+
97
+ >>> # Initializing a model from the Mistral 7B style configuration
98
+ >>> model = MistralModel(configuration)
99
+
100
+ >>> # Accessing the model configuration
101
+ >>> configuration = model.config
102
+ ```"""
103
+
104
+ model_type = "mistral"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ vocab_size=32000,
110
+ hidden_size=4096,
111
+ intermediate_size=14336,
112
+ num_hidden_layers=32,
113
+ num_attention_heads=32,
114
+ num_key_value_heads=8,
115
+ hidden_act="silu",
116
+ max_position_embeddings=4096 * 32,
117
+ initializer_range=0.02,
118
+ rms_norm_eps=1e-6,
119
+ use_cache=True,
120
+ pad_token_id=None,
121
+ bos_token_id=1,
122
+ eos_token_id=2,
123
+ tie_word_embeddings=False,
124
+ rope_scaling={
125
+ "factor": 16.0,
126
+ "finetuned": True,
127
+ "original_max_position_embeddings": 8192,
128
+ "type": "dynamic-yarn"},
129
+ rope_theta=10000.0,
130
+ sliding_window=4096,
131
+ attention_dropout=0.0,
132
+ **kwargs,
133
+ ):
134
+ self.vocab_size = vocab_size
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.hidden_size = hidden_size
137
+ self.intermediate_size = intermediate_size
138
+ self.num_hidden_layers = num_hidden_layers
139
+ self.num_attention_heads = num_attention_heads
140
+ self.sliding_window = sliding_window
141
+
142
+ # for backward compatibility
143
+ if num_key_value_heads is None:
144
+ num_key_value_heads = num_attention_heads
145
+
146
+ self.num_key_value_heads = num_key_value_heads
147
+ self.hidden_act = hidden_act
148
+ self.initializer_range = initializer_range
149
+ self.rms_norm_eps = rms_norm_eps
150
+ self.use_cache = use_cache
151
+ self.rope_scaling = rope_scaling
152
+ self.attention_dropout = attention_dropout
153
+ self.rope_theta = rope_theta
154
+ self._rope_scaling_validation()
155
+
156
+ super().__init__(
157
+ pad_token_id=pad_token_id,
158
+ bos_token_id=bos_token_id,
159
+ eos_token_id=eos_token_id,
160
+ tie_word_embeddings=tie_word_embeddings,
161
+ **kwargs,
162
+ )
163
+
164
+ def _rope_scaling_validation(self):
165
+ """
166
+ Validate the `rope_scaling` configuration.
167
+ """
168
+ if self.rope_scaling is None:
169
+ return
170
+
171
+ if not isinstance(self.rope_scaling, dict):
172
+ raise ValueError(
173
+ "`rope_scaling` must be a dictionary, "
174
+ f"got {self.rope_scaling}"
175
+ )
176
+ rope_scaling_type = self.rope_scaling.get("type", None)
177
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
178
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]:
179
+ raise ValueError(
180
+ f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}"
181
+ )
182
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
183
+ raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
184
+ if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn":
185
+ original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
186
+ if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
187
+ raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.2"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a943387922f9aaed6acbb5a65f5faa1b9b6699d6024fc4a30a500558b17f9d1
3
+ size 4943162336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d954d2cfd147440423ae9450874a6727e70c7d2a43c094b0542860a0a55934e8
3
+ size 4999819336
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9750f2739f3487b7d8b0e35b9b51e87a2181f7168eec2144c4c46afcffe64e9f
3
+ size 4540516344
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14483464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
296
+ "model.norm.weight": "model-00003-of-00003.safetensors"
297
+ }
298
+ }
modeling_mistral_yarn.py ADDED
@@ -0,0 +1,1638 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Mistral model."""
21
+ import inspect
22
+ import math
23
+ import warnings
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.cache_utils import Cache, DynamicCache
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
35
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ is_flash_attn_2_available,
41
+ is_flash_attn_greater_or_equal_2_10,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from .configuration_mistral import MistralConfig
46
+
47
+
48
+ if is_flash_attn_2_available():
49
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
50
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
51
+
52
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
53
+
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "MistralConfig"
58
+
59
+
60
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
61
+ def _get_unpad_data(attention_mask):
62
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
63
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
64
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
65
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
66
+ return (
67
+ indices,
68
+ cu_seqlens,
69
+ max_seqlen_in_batch,
70
+ )
71
+
72
+ # Newly Added For YARN
73
+
74
+ def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
75
+ return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
76
+
77
+ # Find dim range bounds based on rotations
78
+ def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
79
+ low = math.floor(_yarn_find_correction_dim(
80
+ low_rot, dim, base, max_position_embeddings))
81
+ high = math.ceil(_yarn_find_correction_dim(
82
+ high_rot, dim, base, max_position_embeddings))
83
+ return max(low, 0), min(high, dim-1) # Clamp values just in case
84
+
85
+ def _yarn_linear_ramp_mask(min, max, dim):
86
+ if min == max:
87
+ max += 0.001 # Prevent singularity
88
+
89
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
90
+ ramp_func = torch.clamp(linear_func, 0, 1)
91
+ return ramp_func
92
+
93
+ def _yarn_get_mscale(scale=1):
94
+ if scale <= 1:
95
+ return 1.0
96
+ return 0.07 * math.log(scale) + 1.0
97
+
98
+
99
+
100
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
101
+ class MistralRMSNorm(nn.Module):
102
+ def __init__(self, hidden_size, eps=1e-6):
103
+ """
104
+ MistralRMSNorm is equivalent to T5LayerNorm
105
+ """
106
+ super().__init__()
107
+ self.weight = nn.Parameter(torch.ones(hidden_size))
108
+ self.variance_epsilon = eps
109
+
110
+ def forward(self, hidden_states):
111
+ input_dtype = hidden_states.dtype
112
+ hidden_states = hidden_states.to(torch.float32)
113
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
114
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
115
+ return self.weight * hidden_states.to(input_dtype)
116
+
117
+
118
+ # copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
119
+ # TODO @Arthur no longer copied from LLama after static cache
120
+ class MistralRotaryEmbedding(nn.Module):
121
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
122
+ super().__init__()
123
+
124
+ self.dim = dim
125
+ self.max_position_embeddings = max_position_embeddings
126
+ self.base = base
127
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
128
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
129
+
130
+ # Build here to make `torch.jit.trace` work.
131
+ self._set_cos_sin_cache(
132
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
133
+ )
134
+
135
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
136
+ self.max_seq_len_cached = seq_len
137
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
138
+
139
+ freqs = torch.outer(t, self.inv_freq)
140
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
141
+ emb = torch.cat((freqs, freqs), dim=-1)
142
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
143
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
144
+
145
+ def forward(self, x, seq_len=None):
146
+ # x: [bs, num_attention_heads, seq_len, head_size]
147
+ if seq_len > self.max_seq_len_cached:
148
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
149
+
150
+ return (
151
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
152
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
153
+ )
154
+
155
+
156
+ # Newly Added For YARN
157
+ class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding): #Positional Interpolation
158
+ """MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
159
+
160
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
161
+ self.scaling_factor = scaling_factor
162
+ super().__init__(dim, max_position_embeddings, base, device)
163
+
164
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
165
+ self.max_seq_len_cached = seq_len
166
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
167
+ t = t / self.scaling_factor
168
+
169
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
170
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
171
+ emb = torch.cat((freqs, freqs), dim=-1)
172
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
173
+ self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False)
174
+
175
+
176
+ # Newly Added For YARN
177
+ class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
178
+ """MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
179
+
180
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
181
+ self.scaling_factor = scaling_factor
182
+ super().__init__(dim, max_position_embeddings, base, device)
183
+
184
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
185
+ self.max_seq_len_cached = seq_len
186
+
187
+ if seq_len > self.max_position_embeddings:
188
+ base = self.base * ((self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
189
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
190
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
191
+
192
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
193
+
194
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
195
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
196
+ emb = torch.cat((freqs, freqs), dim=-1)
197
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
198
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
199
+
200
+
201
+ # Newly Added For YARN
202
+ class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
203
+ """MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071"""
204
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
205
+ extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
206
+ super().__init__()
207
+
208
+ self.dim = dim
209
+ self.max_position_embeddings = max_position_embeddings
210
+ self.base = base
211
+ self.scale = scale
212
+ self.original_max_position_embeddings = original_max_position_embeddings
213
+ self.extrapolation_factor = extrapolation_factor
214
+ self.attn_factor = attn_factor
215
+ self.beta_fast = beta_fast
216
+ self.beta_slow = beta_slow
217
+
218
+ self.yarn(device)
219
+
220
+ # Build here to make `torch.jit.trace` work.
221
+ self.max_seq_len_cached = max_position_embeddings
222
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
223
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
224
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
225
+ emb = torch.cat((freqs, freqs), dim=-1)
226
+ dtype = torch.get_default_dtype()
227
+
228
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
229
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
230
+
231
+ def forward(self, x, seq_len=None):
232
+ # x: [bs, num_attention_heads, seq_len, head_size]
233
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
234
+ if seq_len > self.max_seq_len_cached:
235
+ self.max_seq_len_cached = seq_len
236
+
237
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
238
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
239
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
240
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
241
+
242
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
243
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
244
+ return (
245
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
246
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
247
+ )
248
+
249
+ def yarn(self, device):
250
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
251
+ inv_freq_extrapolation = 1.0 / pos_freqs
252
+ inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
253
+
254
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
255
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
256
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
257
+
258
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
259
+ self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
260
+
261
+
262
+ # Newly Added For YARN
263
+ class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
264
+ """MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071"""
265
+ def __init__(
266
+ self,
267
+ dim,
268
+ max_position_embeddings=2048,
269
+ base=10000,
270
+ original_max_position_embeddings=2048,
271
+ extrapolation_factor=1,
272
+ attn_factor=1,
273
+ beta_fast=128,
274
+ beta_slow=2,
275
+ finetuned=False,
276
+ device=None
277
+ ):
278
+ super().__init__()
279
+
280
+ self.dim = dim
281
+ self.max_position_embeddings = max_position_embeddings
282
+ self.base = base
283
+ self.original_max_position_embeddings = original_max_position_embeddings
284
+ self.extrapolation_factor = extrapolation_factor
285
+ self.attn_factor = attn_factor
286
+ self.beta_fast = beta_fast
287
+ self.beta_slow = beta_slow
288
+
289
+ if finetuned:
290
+ self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
291
+ else:
292
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
293
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
294
+ self.mscale = 1
295
+
296
+ # Build here to make `torch.jit.trace` work.
297
+ self.max_seq_len_cached = max_position_embeddings
298
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
299
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
300
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
301
+ emb = torch.cat((freqs, freqs), dim=-1)
302
+ dtype = torch.get_default_dtype()
303
+
304
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
305
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
306
+
307
+ def forward(self, x, seq_len=None):
308
+ # x: [bs, num_attention_heads, seq_len, head_size]
309
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
310
+ if seq_len > self.max_seq_len_cached:
311
+ self.max_seq_len_cached = seq_len
312
+
313
+ self.yarn(seq_len / self.max_position_embeddings, x.device)
314
+
315
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
316
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
317
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
318
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
319
+
320
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
321
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
322
+ return (
323
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
324
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
325
+ )
326
+
327
+ def yarn(self, scale, device):
328
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
329
+ inv_freq_extrapolation = 1.0 / pos_freqs
330
+ inv_freq_interpolation = 1.0 / (scale * pos_freqs)
331
+
332
+ low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
333
+ inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
334
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
335
+
336
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
337
+ self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
338
+
339
+
340
+
341
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
342
+ def rotate_half(x):
343
+ """Rotates half the hidden dims of the input."""
344
+ x1 = x[..., : x.shape[-1] // 2]
345
+ x2 = x[..., x.shape[-1] // 2 :]
346
+ return torch.cat((-x2, x1), dim=-1)
347
+
348
+
349
+ # copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
350
+ # TODO @Arthur no longer copied from LLama after static cache
351
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
352
+ """Applies Rotary Position Embedding to the query and key tensors.
353
+
354
+ Args:
355
+ q (`torch.Tensor`): The query tensor.
356
+ k (`torch.Tensor`): The key tensor.
357
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
358
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
359
+ position_ids (`torch.Tensor`):
360
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
361
+ used to pass offsetted position ids when working with a KV-cache.
362
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
363
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
364
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
365
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
366
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
367
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
368
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
369
+ Returns:
370
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
371
+ """
372
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
373
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
374
+ q_embed = (q * cos) + (rotate_half(q) * sin)
375
+ k_embed = (k * cos) + (rotate_half(k) * sin)
376
+ return q_embed, k_embed
377
+
378
+
379
+ class MistralMLP(nn.Module):
380
+ def __init__(self, config):
381
+ super().__init__()
382
+ self.config = config
383
+ self.hidden_size = config.hidden_size
384
+ self.intermediate_size = config.intermediate_size
385
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
386
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
387
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
388
+ self.act_fn = ACT2FN[config.hidden_act]
389
+
390
+ def forward(self, x):
391
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
392
+
393
+
394
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
395
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
396
+ """
397
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
398
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
399
+ """
400
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
401
+ if n_rep == 1:
402
+ return hidden_states
403
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
404
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
405
+
406
+
407
+ class MistralAttention(nn.Module):
408
+ """
409
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
410
+ and "Generating Long Sequences with Sparse Transformers".
411
+ """
412
+
413
+ def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
414
+ super().__init__()
415
+ self.config = config
416
+ self.layer_idx = layer_idx
417
+ if layer_idx is None:
418
+ logger.warning_once(
419
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
420
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
421
+ "when creating this class."
422
+ )
423
+
424
+ self.hidden_size = config.hidden_size
425
+ self.num_heads = config.num_attention_heads
426
+ self.head_dim = self.hidden_size // self.num_heads
427
+ self.num_key_value_heads = config.num_key_value_heads
428
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
429
+ self.max_position_embeddings = config.max_position_embeddings
430
+ self.rope_theta = config.rope_theta
431
+ self.is_causal = True
432
+ self.attention_dropout = config.attention_dropout
433
+
434
+ if (self.head_dim * self.num_heads) != self.hidden_size:
435
+ raise ValueError(
436
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
437
+ f" and `num_heads`: {self.num_heads})."
438
+ )
439
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
440
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
441
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
442
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
443
+
444
+ # self.rotary_emb = MistralRotaryEmbedding(
445
+ # self.head_dim,
446
+ # max_position_embeddings=self.max_position_embeddings,
447
+ # base=self.rope_theta,
448
+ # )
449
+
450
+ self._init_rope()
451
+
452
+ def _init_rope(self):
453
+ if self.config.rope_scaling is None:
454
+ self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
455
+ else:
456
+ scaling_type = self.config.rope_scaling["type"]
457
+ scaling_factor = self.config.rope_scaling["factor"]
458
+ finetuned = self.config.rope_scaling['finetuned']
459
+ if scaling_type == "linear":
460
+ self.rotary_emb = MistralLinearScalingRotaryEmbedding(
461
+ self.head_dim, max_position_embeddings=self.max_position_embeddings,
462
+ scaling_factor=scaling_factor, base=self.rope_theta,
463
+ )
464
+ elif scaling_type == "dynamic":
465
+ self.rotary_emb = MistralDynamicNTKScalingRotaryEmbedding(
466
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor,
467
+ base=self.rope_theta,
468
+ )
469
+ elif scaling_type == "yarn":
470
+ original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
471
+ self.rotary_emb = MistralYaRNScaledRotaryEmbedding(
472
+ self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor,
473
+ original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta,
474
+ )
475
+ elif scaling_type == "dynamic-yarn":
476
+ original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
477
+ self.rotary_emb = MistralDynamicYaRNScaledRotaryEmbedding(
478
+ self.head_dim, max_position_embeddings=self.max_position_embeddings,
479
+ original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta, finetuned=finetuned
480
+ )
481
+ else:
482
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
483
+
484
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
485
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
486
+
487
+ def forward(
488
+ self,
489
+ hidden_states: torch.Tensor,
490
+ attention_mask: Optional[torch.Tensor] = None,
491
+ position_ids: Optional[torch.LongTensor] = None,
492
+ past_key_value: Optional[Cache] = None,
493
+ output_attentions: bool = False,
494
+ use_cache: bool = False,
495
+ **kwargs,
496
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
497
+
498
+ if "padding_mask" in kwargs:
499
+ warnings.warn(
500
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
501
+ )
502
+
503
+ bsz, q_len, _ = hidden_states.size()
504
+
505
+ query_states = self.q_proj(hidden_states)
506
+ key_states = self.k_proj(hidden_states)
507
+ value_states = self.v_proj(hidden_states)
508
+
509
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
510
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
511
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
512
+
513
+ kv_seq_len = key_states.shape[-2]
514
+ if past_key_value is not None:
515
+ if self.layer_idx is None:
516
+ raise ValueError(
517
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
518
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
519
+ "with a layer index."
520
+ )
521
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
522
+
523
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
524
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
525
+
526
+ if past_key_value is not None:
527
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
528
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
529
+
530
+ # repeat k/v heads if n_kv_heads < n_heads
531
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
532
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
533
+
534
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
535
+
536
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
537
+ raise ValueError(
538
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
539
+ f" {attn_weights.size()}"
540
+ )
541
+
542
+ if attention_mask is not None:
543
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
544
+ raise ValueError(
545
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
546
+ )
547
+
548
+ attn_weights = attn_weights + attention_mask
549
+
550
+ # upcast attention to fp32
551
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
552
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
553
+ attn_output = torch.matmul(attn_weights, value_states)
554
+
555
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
556
+ raise ValueError(
557
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
558
+ f" {attn_output.size()}"
559
+ )
560
+
561
+ attn_output = attn_output.transpose(1, 2).contiguous()
562
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
563
+
564
+ attn_output = self.o_proj(attn_output)
565
+
566
+ if not output_attentions:
567
+ attn_weights = None
568
+
569
+ return attn_output, attn_weights, past_key_value
570
+
571
+
572
+ class MistralFlashAttention2(MistralAttention):
573
+ """
574
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
575
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
576
+ flash attention and deal with padding tokens in case the input contains any of them.
577
+ """
578
+
579
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
580
+ def __init__(self, *args, **kwargs):
581
+ super().__init__(*args, **kwargs)
582
+
583
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
584
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
585
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
586
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
587
+
588
+ def forward(
589
+ self,
590
+ hidden_states: torch.Tensor,
591
+ attention_mask: Optional[torch.Tensor] = None,
592
+ position_ids: Optional[torch.LongTensor] = None,
593
+ past_key_value: Optional[Cache] = None,
594
+ output_attentions: bool = False,
595
+ use_cache: bool = False,
596
+ **kwargs,
597
+ ):
598
+ if "padding_mask" in kwargs:
599
+ warnings.warn(
600
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure to use `attention_mask` instead.`"
601
+ )
602
+
603
+ # overwrite attention_mask with padding_mask
604
+ attention_mask = kwargs.pop("padding_mask")
605
+ bsz, q_len, _ = hidden_states.size()
606
+
607
+ query_states = self.q_proj(hidden_states)
608
+ key_states = self.k_proj(hidden_states)
609
+ value_states = self.v_proj(hidden_states)
610
+
611
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
612
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
613
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
614
+
615
+ kv_seq_len = key_states.shape[-2]
616
+ if past_key_value is not None:
617
+ if self.layer_idx is None:
618
+ raise ValueError(
619
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
620
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
621
+ "with a layer index."
622
+ )
623
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
624
+
625
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
626
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
627
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
628
+
629
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
630
+
631
+ use_sliding_windows = (
632
+ _flash_supports_window_size
633
+ and getattr(self.config, "sliding_window", None) is not None
634
+ and kv_seq_len > self.config.sliding_window
635
+ )
636
+
637
+ if not _flash_supports_window_size:
638
+ logger.warning_once(
639
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
640
+ " make sure to upgrade flash-attn library."
641
+ )
642
+
643
+ if past_key_value is not None:
644
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
645
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
646
+ if (
647
+ getattr(self.config, "sliding_window", None) is not None
648
+ and kv_seq_len > self.config.sliding_window
649
+ and cache_has_contents
650
+ ):
651
+ slicing_tokens = 1 - self.config.sliding_window
652
+
653
+ past_key = past_key_value[self.layer_idx][0]
654
+ past_value = past_key_value[self.layer_idx][1]
655
+
656
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
657
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
658
+
659
+ if past_key.shape[-2] != self.config.sliding_window - 1:
660
+ raise ValueError(
661
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
662
+ f" {past_key.shape}"
663
+ )
664
+
665
+ if attention_mask is not None:
666
+ attention_mask = attention_mask[:, slicing_tokens:]
667
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
668
+
669
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
670
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
671
+
672
+ # repeat k/v heads if n_kv_heads < n_heads
673
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
674
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
675
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
676
+
677
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
678
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
679
+ # cast them back in float16 just to be sure everything works as expected.
680
+ input_dtype = query_states.dtype
681
+ if input_dtype == torch.float32:
682
+ if torch.is_autocast_enabled():
683
+ target_dtype = torch.get_autocast_gpu_dtype()
684
+ # Handle the case where the model is quantized
685
+ elif hasattr(self.config, "_pre_quantization_dtype"):
686
+ target_dtype = self.config._pre_quantization_dtype
687
+ else:
688
+ target_dtype = self.q_proj.weight.dtype
689
+
690
+ logger.warning_once(
691
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
692
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
693
+ f" {target_dtype}."
694
+ )
695
+
696
+ query_states = query_states.to(target_dtype)
697
+ key_states = key_states.to(target_dtype)
698
+ value_states = value_states.to(target_dtype)
699
+
700
+ # Reashape to the expected shape for Flash Attention
701
+ query_states = query_states.transpose(1, 2)
702
+ key_states = key_states.transpose(1, 2)
703
+ value_states = value_states.transpose(1, 2)
704
+
705
+ attn_output = self._flash_attention_forward(
706
+ query_states,
707
+ key_states,
708
+ value_states,
709
+ attention_mask,
710
+ q_len,
711
+ dropout=dropout_rate,
712
+ use_sliding_windows=use_sliding_windows,
713
+ )
714
+
715
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
716
+ attn_output = self.o_proj(attn_output)
717
+
718
+ if not output_attentions:
719
+ attn_weights = None
720
+
721
+ return attn_output, attn_weights, past_key_value
722
+
723
+ def _flash_attention_forward(
724
+ self,
725
+ query_states,
726
+ key_states,
727
+ value_states,
728
+ attention_mask,
729
+ query_length,
730
+ dropout=0.0,
731
+ softmax_scale=None,
732
+ use_sliding_windows=False,
733
+ ):
734
+ """
735
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
736
+ first unpad the input, then computes the attention scores and pad the final attention scores.
737
+
738
+ Args:
739
+ query_states (`torch.Tensor`):
740
+ Input query states to be passed to Flash Attention API
741
+ key_states (`torch.Tensor`):
742
+ Input key states to be passed to Flash Attention API
743
+ value_states (`torch.Tensor`):
744
+ Input value states to be passed to Flash Attention API
745
+ attention_mask (`torch.Tensor`):
746
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
747
+ position of padding tokens and 1 for the position of non-padding tokens.
748
+ dropout (`int`, *optional*):
749
+ Attention dropout
750
+ softmax_scale (`float`, *optional*):
751
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
752
+ use_sliding_windows (`bool`, *optional*):
753
+ Whether to activate sliding window attention.
754
+ """
755
+ if not self._flash_attn_uses_top_left_mask:
756
+ causal = self.is_causal
757
+ else:
758
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
759
+ causal = self.is_causal and query_length != 1
760
+
761
+ # Contains at least one padding token in the sequence
762
+ if attention_mask is not None:
763
+ batch_size = query_states.shape[0]
764
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
765
+ query_states, key_states, value_states, attention_mask, query_length
766
+ )
767
+
768
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
769
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
770
+
771
+ if not use_sliding_windows:
772
+ attn_output_unpad = flash_attn_varlen_func(
773
+ query_states,
774
+ key_states,
775
+ value_states,
776
+ cu_seqlens_q=cu_seqlens_q,
777
+ cu_seqlens_k=cu_seqlens_k,
778
+ max_seqlen_q=max_seqlen_in_batch_q,
779
+ max_seqlen_k=max_seqlen_in_batch_k,
780
+ dropout_p=dropout,
781
+ softmax_scale=softmax_scale,
782
+ causal=causal,
783
+ )
784
+ else:
785
+ attn_output_unpad = flash_attn_varlen_func(
786
+ query_states,
787
+ key_states,
788
+ value_states,
789
+ cu_seqlens_q=cu_seqlens_q,
790
+ cu_seqlens_k=cu_seqlens_k,
791
+ max_seqlen_q=max_seqlen_in_batch_q,
792
+ max_seqlen_k=max_seqlen_in_batch_k,
793
+ dropout_p=dropout,
794
+ softmax_scale=softmax_scale,
795
+ causal=causal,
796
+ window_size=(self.config.sliding_window, self.config.sliding_window),
797
+ )
798
+
799
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
800
+ else:
801
+ if not use_sliding_windows:
802
+ attn_output = flash_attn_func(
803
+ query_states,
804
+ key_states,
805
+ value_states,
806
+ dropout,
807
+ softmax_scale=softmax_scale,
808
+ causal=causal,
809
+ )
810
+ else:
811
+ attn_output = flash_attn_func(
812
+ query_states,
813
+ key_states,
814
+ value_states,
815
+ dropout,
816
+ softmax_scale=softmax_scale,
817
+ causal=causal,
818
+ window_size=(self.config.sliding_window, self.config.sliding_window),
819
+ )
820
+
821
+ return attn_output
822
+
823
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
824
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
825
+
826
+ # On the first iteration we need to properly re-create the padding mask
827
+ # by slicing it on the proper place
828
+ if kv_seq_len != attention_mask.shape[-1]:
829
+ attention_mask_num_tokens = attention_mask.shape[-1]
830
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
831
+
832
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
833
+
834
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
835
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
836
+
837
+ if query_length == kv_seq_len:
838
+ query_layer = index_first_axis(
839
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
840
+ )
841
+ cu_seqlens_q = cu_seqlens_k
842
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
843
+ indices_q = indices_k
844
+ elif query_length == 1:
845
+ max_seqlen_in_batch_q = 1
846
+ cu_seqlens_q = torch.arange(
847
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
848
+ ) # There is a memcpy here, that is very bad.
849
+ indices_q = cu_seqlens_q[:-1]
850
+ query_layer = query_layer.squeeze(1)
851
+ else:
852
+ # The -q_len: slice assumes left padding.
853
+ attention_mask = attention_mask[:, -query_length:]
854
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
855
+
856
+ return (
857
+ query_layer,
858
+ key_layer,
859
+ value_layer,
860
+ indices_q,
861
+ (cu_seqlens_q, cu_seqlens_k),
862
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
863
+ )
864
+
865
+
866
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
867
+ # TODO @Arthur no longer copied from LLama after static cache
868
+ class MistralSdpaAttention(MistralAttention):
869
+ """
870
+ Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
871
+ `MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
872
+ SDPA API.
873
+ """
874
+
875
+ # Adapted from MistralAttention.forward
876
+ def forward(
877
+ self,
878
+ hidden_states: torch.Tensor,
879
+ attention_mask: Optional[torch.Tensor] = None,
880
+ position_ids: Optional[torch.LongTensor] = None,
881
+ past_key_value: Optional[Cache] = None,
882
+ output_attentions: bool = False,
883
+ use_cache: bool = False,
884
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
885
+ if output_attentions:
886
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
887
+ logger.warning_once(
888
+ "MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
889
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
890
+ )
891
+ return super().forward(
892
+ hidden_states=hidden_states,
893
+ attention_mask=attention_mask,
894
+ position_ids=position_ids,
895
+ past_key_value=past_key_value,
896
+ output_attentions=output_attentions,
897
+ use_cache=use_cache,
898
+ )
899
+
900
+ bsz, q_len, _ = hidden_states.size()
901
+
902
+ query_states = self.q_proj(hidden_states)
903
+ key_states = self.k_proj(hidden_states)
904
+ value_states = self.v_proj(hidden_states)
905
+
906
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
907
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
908
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
909
+
910
+ kv_seq_len = key_states.shape[-2]
911
+ if past_key_value is not None:
912
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
913
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
914
+
915
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
916
+
917
+ if past_key_value is not None:
918
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
919
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
920
+
921
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
922
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
923
+
924
+ if attention_mask is not None:
925
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
926
+ raise ValueError(
927
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
928
+ )
929
+
930
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
931
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
932
+ if query_states.device.type == "cuda" and attention_mask is not None:
933
+ query_states = query_states.contiguous()
934
+ key_states = key_states.contiguous()
935
+ value_states = value_states.contiguous()
936
+
937
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
938
+ query_states,
939
+ key_states,
940
+ value_states,
941
+ attn_mask=attention_mask,
942
+ dropout_p=self.attention_dropout if self.training else 0.0,
943
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
944
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
945
+ )
946
+
947
+ attn_output = attn_output.transpose(1, 2).contiguous()
948
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
949
+
950
+ attn_output = self.o_proj(attn_output)
951
+
952
+ return attn_output, None, past_key_value
953
+
954
+
955
+ MISTRAL_ATTENTION_CLASSES = {
956
+ "eager": MistralAttention,
957
+ "flash_attention_2": MistralFlashAttention2,
958
+ "sdpa": MistralSdpaAttention,
959
+ }
960
+
961
+
962
+ class MistralDecoderLayer(nn.Module):
963
+ def __init__(self, config: MistralConfig, layer_idx: int):
964
+ super().__init__()
965
+ self.hidden_size = config.hidden_size
966
+
967
+ if config._attn_implementation:
968
+ self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
969
+ else:
970
+ self.self_attn = MISTRAL_ATTENTION_CLASSES['flash_attention_2'](config, layer_idx)
971
+
972
+ self.mlp = MistralMLP(config)
973
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
974
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
975
+
976
+ def forward(
977
+ self,
978
+ hidden_states: torch.Tensor,
979
+ attention_mask: Optional[torch.Tensor] = None,
980
+ position_ids: Optional[torch.LongTensor] = None,
981
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
982
+ output_attentions: Optional[bool] = False,
983
+ use_cache: Optional[bool] = False,
984
+ **kwargs,
985
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
986
+ if "padding_mask" in kwargs:
987
+ warnings.warn(
988
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
989
+ )
990
+ """
991
+ Args:
992
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
993
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
994
+ `(batch, sequence_length)` where padding elements are indicated by 0.
995
+ output_attentions (`bool`, *optional*):
996
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
997
+ returned tensors for more detail.
998
+ use_cache (`bool`, *optional*):
999
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1000
+ (see `past_key_values`).
1001
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1002
+ """
1003
+
1004
+ residual = hidden_states
1005
+
1006
+ hidden_states = self.input_layernorm(hidden_states)
1007
+
1008
+ # Self Attention
1009
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1010
+ hidden_states=hidden_states,
1011
+ attention_mask=attention_mask,
1012
+ position_ids=position_ids,
1013
+ past_key_value=past_key_value,
1014
+ output_attentions=output_attentions,
1015
+ use_cache=use_cache,
1016
+ )
1017
+ hidden_states = residual + hidden_states
1018
+
1019
+ # Fully Connected
1020
+ residual = hidden_states
1021
+ hidden_states = self.post_attention_layernorm(hidden_states)
1022
+ hidden_states = self.mlp(hidden_states)
1023
+ hidden_states = residual + hidden_states
1024
+
1025
+ outputs = (hidden_states,)
1026
+
1027
+ if output_attentions:
1028
+ outputs += (self_attn_weights,)
1029
+
1030
+ if use_cache:
1031
+ outputs += (present_key_value,)
1032
+
1033
+ return outputs
1034
+
1035
+
1036
+ MISTRAL_START_DOCSTRING = r"""
1037
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1038
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1039
+ etc.)
1040
+
1041
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1042
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1043
+ and behavior.
1044
+
1045
+ Parameters:
1046
+ config ([`MistralConfig`]):
1047
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1048
+ load the weights associated with the model, only the configuration. Check out the
1049
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1050
+ """
1051
+
1052
+
1053
+ @add_start_docstrings(
1054
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1055
+ MISTRAL_START_DOCSTRING,
1056
+ )
1057
+ class MistralPreTrainedModel(PreTrainedModel):
1058
+ config_class = MistralConfig
1059
+ base_model_prefix = "model"
1060
+ supports_gradient_checkpointing = True
1061
+ _no_split_modules = ["MistralDecoderLayer"]
1062
+ _skip_keys_device_placement = "past_key_values"
1063
+ _supports_flash_attn_2 = True
1064
+ _supports_sdpa = True
1065
+ _supports_cache_class = True
1066
+
1067
+ def _init_weights(self, module):
1068
+ std = self.config.initializer_range
1069
+ if isinstance(module, nn.Linear):
1070
+ module.weight.data.normal_(mean=0.0, std=std)
1071
+ if module.bias is not None:
1072
+ module.bias.data.zero_()
1073
+ elif isinstance(module, nn.Embedding):
1074
+ module.weight.data.normal_(mean=0.0, std=std)
1075
+ if module.padding_idx is not None:
1076
+ module.weight.data[module.padding_idx].zero_()
1077
+
1078
+
1079
+ MISTRAL_INPUTS_DOCSTRING = r"""
1080
+ Args:
1081
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1082
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1083
+ it.
1084
+
1085
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1086
+ [`PreTrainedTokenizer.__call__`] for details.
1087
+
1088
+ [What are input IDs?](../glossary#input-ids)
1089
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1090
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1091
+
1092
+ - 1 for tokens that are **not masked**,
1093
+ - 0 for tokens that are **masked**.
1094
+
1095
+ [What are attention masks?](../glossary#attention-mask)
1096
+
1097
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1098
+ [`PreTrainedTokenizer.__call__`] for details.
1099
+
1100
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1101
+ `past_key_values`).
1102
+
1103
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1104
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1105
+ information on the default strategy.
1106
+
1107
+ - 1 indicates the head is **not masked**,
1108
+ - 0 indicates the head is **masked**.
1109
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1110
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1111
+ config.n_positions - 1]`.
1112
+
1113
+ [What are position IDs?](../glossary#position-ids)
1114
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1115
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1116
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1117
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1118
+
1119
+ Two formats are allowed:
1120
+ - a [`~cache_utils.Cache`] instance;
1121
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1122
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1123
+ cache format.
1124
+
1125
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1126
+ legacy cache format will be returned.
1127
+
1128
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1129
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1130
+ of shape `(batch_size, sequence_length)`.
1131
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1132
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1133
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1134
+ model's internal embedding lookup matrix.
1135
+ use_cache (`bool`, *optional*):
1136
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1137
+ `past_key_values`).
1138
+ output_attentions (`bool`, *optional*):
1139
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1140
+ tensors for more detail.
1141
+ output_hidden_states (`bool`, *optional*):
1142
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1143
+ more detail.
1144
+ return_dict (`bool`, *optional*):
1145
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1146
+ """
1147
+
1148
+
1149
+ @add_start_docstrings(
1150
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1151
+ MISTRAL_START_DOCSTRING,
1152
+ )
1153
+ class MistralModel(MistralPreTrainedModel):
1154
+ """
1155
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
1156
+
1157
+ Args:
1158
+ config: MistralConfig
1159
+ """
1160
+
1161
+ def __init__(self, config: MistralConfig):
1162
+ super().__init__(config)
1163
+ self.padding_idx = config.pad_token_id
1164
+ self.vocab_size = config.vocab_size
1165
+
1166
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1167
+ self.layers = nn.ModuleList(
1168
+ [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1169
+ )
1170
+ self._attn_implementation = config._attn_implementation
1171
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1172
+
1173
+ self.gradient_checkpointing = False
1174
+ # Initialize weights and apply final processing
1175
+ self.post_init()
1176
+
1177
+ def get_input_embeddings(self):
1178
+ return self.embed_tokens
1179
+
1180
+ def set_input_embeddings(self, value):
1181
+ self.embed_tokens = value
1182
+
1183
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1184
+ def forward(
1185
+ self,
1186
+ input_ids: torch.LongTensor = None,
1187
+ attention_mask: Optional[torch.Tensor] = None,
1188
+ position_ids: Optional[torch.LongTensor] = None,
1189
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1190
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1191
+ use_cache: Optional[bool] = None,
1192
+ output_attentions: Optional[bool] = None,
1193
+ output_hidden_states: Optional[bool] = None,
1194
+ return_dict: Optional[bool] = None,
1195
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1196
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1197
+ output_hidden_states = (
1198
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1199
+ )
1200
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1201
+
1202
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1203
+
1204
+ # retrieve input_ids and inputs_embeds
1205
+ if input_ids is not None and inputs_embeds is not None:
1206
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1207
+ elif input_ids is not None:
1208
+ batch_size, seq_length = input_ids.shape
1209
+ elif inputs_embeds is not None:
1210
+ batch_size, seq_length, _ = inputs_embeds.shape
1211
+ else:
1212
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1213
+
1214
+ if self.gradient_checkpointing and self.training:
1215
+ if use_cache:
1216
+ logger.warning_once(
1217
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1218
+ )
1219
+ use_cache = False
1220
+
1221
+ past_key_values_length = 0
1222
+
1223
+ if use_cache:
1224
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1225
+ if use_legacy_cache:
1226
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1227
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1228
+
1229
+ if position_ids is None:
1230
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1231
+ position_ids = torch.arange(
1232
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1233
+ )
1234
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1235
+ else:
1236
+ position_ids = position_ids.view(-1, seq_length).long()
1237
+
1238
+ if inputs_embeds is None:
1239
+ inputs_embeds = self.embed_tokens(input_ids)
1240
+
1241
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1242
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1243
+ if is_padding_right:
1244
+ raise ValueError(
1245
+ "You are attempting to perform batched generation with padding_side='right'"
1246
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
1247
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1248
+ )
1249
+
1250
+ if self._attn_implementation == "flash_attention_2":
1251
+ # 2d mask is passed through the layers
1252
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1253
+ elif self._attn_implementation == "sdpa" and not output_attentions:
1254
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1255
+ # the manual implementation that requires a 4D causal mask in all cases.
1256
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1257
+ attention_mask,
1258
+ (batch_size, seq_length),
1259
+ inputs_embeds,
1260
+ past_key_values_length,
1261
+ )
1262
+ else:
1263
+ # 4d mask is passed through the layers
1264
+ attention_mask = _prepare_4d_causal_attention_mask(
1265
+ attention_mask,
1266
+ (batch_size, seq_length),
1267
+ inputs_embeds,
1268
+ past_key_values_length,
1269
+ sliding_window=self.config.sliding_window,
1270
+ )
1271
+
1272
+ hidden_states = inputs_embeds
1273
+
1274
+ # decoder layers
1275
+ all_hidden_states = () if output_hidden_states else None
1276
+ all_self_attns = () if output_attentions else None
1277
+ next_decoder_cache = None
1278
+
1279
+ for decoder_layer in self.layers:
1280
+ if output_hidden_states:
1281
+ all_hidden_states += (hidden_states,)
1282
+
1283
+ if self.gradient_checkpointing and self.training:
1284
+ layer_outputs = self._gradient_checkpointing_func(
1285
+ decoder_layer.__call__,
1286
+ hidden_states,
1287
+ attention_mask,
1288
+ position_ids,
1289
+ past_key_values,
1290
+ output_attentions,
1291
+ use_cache,
1292
+ )
1293
+ else:
1294
+ layer_outputs = decoder_layer(
1295
+ hidden_states,
1296
+ attention_mask=attention_mask,
1297
+ position_ids=position_ids,
1298
+ past_key_value=past_key_values,
1299
+ output_attentions=output_attentions,
1300
+ use_cache=use_cache,
1301
+ )
1302
+
1303
+ hidden_states = layer_outputs[0]
1304
+
1305
+ if use_cache:
1306
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1307
+
1308
+ if output_attentions:
1309
+ all_self_attns += (layer_outputs[1],)
1310
+
1311
+ hidden_states = self.norm(hidden_states)
1312
+
1313
+ # add hidden states from the last decoder layer
1314
+ if output_hidden_states:
1315
+ all_hidden_states += (hidden_states,)
1316
+
1317
+ next_cache = None
1318
+ if use_cache:
1319
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1320
+
1321
+ if not return_dict:
1322
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1323
+ return BaseModelOutputWithPast(
1324
+ last_hidden_state=hidden_states,
1325
+ past_key_values=next_cache,
1326
+ hidden_states=all_hidden_states,
1327
+ attentions=all_self_attns,
1328
+ )
1329
+
1330
+
1331
+ class MistralForCausalLM(MistralPreTrainedModel):
1332
+ _tied_weights_keys = ["lm_head.weight"]
1333
+
1334
+ def __init__(self, config):
1335
+ super().__init__(config)
1336
+ self.model = MistralModel(config)
1337
+ self.vocab_size = config.vocab_size
1338
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1339
+
1340
+ # Initialize weights and apply final processing
1341
+ self.post_init()
1342
+
1343
+ def get_input_embeddings(self):
1344
+ return self.model.embed_tokens
1345
+
1346
+ def set_input_embeddings(self, value):
1347
+ self.model.embed_tokens = value
1348
+
1349
+ def get_output_embeddings(self):
1350
+ return self.lm_head
1351
+
1352
+ def set_output_embeddings(self, new_embeddings):
1353
+ self.lm_head = new_embeddings
1354
+
1355
+ def set_decoder(self, decoder):
1356
+ self.model = decoder
1357
+
1358
+ def get_decoder(self):
1359
+ return self.model
1360
+
1361
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1362
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1363
+ def forward(
1364
+ self,
1365
+ input_ids: torch.LongTensor = None,
1366
+ attention_mask: Optional[torch.Tensor] = None,
1367
+ position_ids: Optional[torch.LongTensor] = None,
1368
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1369
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1370
+ labels: Optional[torch.LongTensor] = None,
1371
+ use_cache: Optional[bool] = None,
1372
+ output_attentions: Optional[bool] = None,
1373
+ output_hidden_states: Optional[bool] = None,
1374
+ return_dict: Optional[bool] = None,
1375
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1376
+ r"""
1377
+ Args:
1378
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1379
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1380
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1381
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1382
+
1383
+ Returns:
1384
+
1385
+ Example:
1386
+
1387
+ ```python
1388
+ >>> from transformers import AutoTokenizer, MistralForCausalLM
1389
+
1390
+ >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
1391
+ >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
1392
+
1393
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1394
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1395
+
1396
+ >>> # Generate
1397
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1398
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1399
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1400
+ ```"""
1401
+
1402
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1403
+ output_hidden_states = (
1404
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1405
+ )
1406
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1407
+
1408
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1409
+ outputs = self.model(
1410
+ input_ids=input_ids,
1411
+ attention_mask=attention_mask,
1412
+ position_ids=position_ids,
1413
+ past_key_values=past_key_values,
1414
+ inputs_embeds=inputs_embeds,
1415
+ use_cache=use_cache,
1416
+ output_attentions=output_attentions,
1417
+ output_hidden_states=output_hidden_states,
1418
+ return_dict=return_dict,
1419
+ )
1420
+
1421
+ hidden_states = outputs[0]
1422
+ logits = self.lm_head(hidden_states)
1423
+ logits = logits.float()
1424
+
1425
+ loss = None
1426
+ if labels is not None:
1427
+ # Shift so that tokens < n predict n
1428
+ shift_logits = logits[..., :-1, :].contiguous()
1429
+ shift_labels = labels[..., 1:].contiguous()
1430
+ # Flatten the tokens
1431
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1432
+ shift_labels = shift_labels.view(-1)
1433
+ # Ensure tensors are on the same device
1434
+ shift_labels = shift_labels.to(shift_logits.device)
1435
+ loss_fct = CrossEntropyLoss()
1436
+ loss = loss_fct(shift_logits, shift_labels)
1437
+
1438
+ if not return_dict:
1439
+ output = (logits,) + outputs[1:]
1440
+ return (loss,) + output if loss is not None else output
1441
+
1442
+ return CausalLMOutputWithPast(
1443
+ loss=loss,
1444
+ logits=logits,
1445
+ past_key_values=outputs.past_key_values,
1446
+ hidden_states=outputs.hidden_states,
1447
+ attentions=outputs.attentions,
1448
+ )
1449
+
1450
+ def prepare_inputs_for_generation(
1451
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1452
+ ):
1453
+ # Omit tokens covered by past_key_values
1454
+ if past_key_values is not None:
1455
+ if isinstance(past_key_values, Cache):
1456
+ cache_length = past_key_values.get_seq_length()
1457
+ past_length = past_key_values.seen_tokens
1458
+ max_cache_length = past_key_values.get_max_length()
1459
+ else:
1460
+ cache_length = past_length = past_key_values[0][0].shape[2]
1461
+ max_cache_length = None
1462
+
1463
+ # Keep only the unprocessed tokens:
1464
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1465
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1466
+ # input)
1467
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1468
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1469
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1470
+ # input_ids based on the past_length.
1471
+ elif past_length < input_ids.shape[1]:
1472
+ input_ids = input_ids[:, past_length:]
1473
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1474
+
1475
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1476
+ if (
1477
+ max_cache_length is not None
1478
+ and attention_mask is not None
1479
+ and cache_length + input_ids.shape[1] > max_cache_length
1480
+ ):
1481
+ attention_mask = attention_mask[:, -max_cache_length:]
1482
+
1483
+ position_ids = kwargs.get("position_ids", None)
1484
+ if attention_mask is not None and position_ids is None:
1485
+ # create position_ids on the fly for batch generation
1486
+ position_ids = attention_mask.long().cumsum(-1) - 1
1487
+ position_ids.masked_fill_(attention_mask == 0, 1)
1488
+ if past_key_values:
1489
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1490
+
1491
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1492
+ if inputs_embeds is not None and past_key_values is None:
1493
+ model_inputs = {"inputs_embeds": inputs_embeds}
1494
+ else:
1495
+ model_inputs = {"input_ids": input_ids}
1496
+
1497
+ model_inputs.update(
1498
+ {
1499
+ "position_ids": position_ids,
1500
+ "past_key_values": past_key_values,
1501
+ "use_cache": kwargs.get("use_cache"),
1502
+ "attention_mask": attention_mask,
1503
+ }
1504
+ )
1505
+ return model_inputs
1506
+
1507
+ @staticmethod
1508
+ def _reorder_cache(past_key_values, beam_idx):
1509
+ reordered_past = ()
1510
+ for layer_past in past_key_values:
1511
+ reordered_past += (
1512
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1513
+ )
1514
+ return reordered_past
1515
+
1516
+
1517
+ @add_start_docstrings(
1518
+ """
1519
+ The Mistral Model transformer with a sequence classification head on top (linear layer).
1520
+
1521
+ [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1522
+ (e.g. GPT-2) do.
1523
+
1524
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1525
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1526
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1527
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1528
+ each row of the batch).
1529
+ """,
1530
+ MISTRAL_START_DOCSTRING,
1531
+ )
1532
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
1533
+ class MistralForSequenceClassification(MistralPreTrainedModel):
1534
+ def __init__(self, config):
1535
+ super().__init__(config)
1536
+ self.num_labels = config.num_labels
1537
+ self.model = MistralModel(config)
1538
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1539
+
1540
+ # Initialize weights and apply final processing
1541
+ self.post_init()
1542
+
1543
+ def get_input_embeddings(self):
1544
+ return self.model.embed_tokens
1545
+
1546
+ def set_input_embeddings(self, value):
1547
+ self.model.embed_tokens = value
1548
+
1549
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1550
+ def forward(
1551
+ self,
1552
+ input_ids: torch.LongTensor = None,
1553
+ attention_mask: Optional[torch.Tensor] = None,
1554
+ position_ids: Optional[torch.LongTensor] = None,
1555
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1556
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1557
+ labels: Optional[torch.LongTensor] = None,
1558
+ use_cache: Optional[bool] = None,
1559
+ output_attentions: Optional[bool] = None,
1560
+ output_hidden_states: Optional[bool] = None,
1561
+ return_dict: Optional[bool] = None,
1562
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1563
+ r"""
1564
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1565
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1566
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1567
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1568
+ """
1569
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1570
+
1571
+ transformer_outputs = self.model(
1572
+ input_ids,
1573
+ attention_mask=attention_mask,
1574
+ position_ids=position_ids,
1575
+ past_key_values=past_key_values,
1576
+ inputs_embeds=inputs_embeds,
1577
+ use_cache=use_cache,
1578
+ output_attentions=output_attentions,
1579
+ output_hidden_states=output_hidden_states,
1580
+ return_dict=return_dict,
1581
+ )
1582
+ hidden_states = transformer_outputs[0]
1583
+ logits = self.score(hidden_states)
1584
+
1585
+ if input_ids is not None:
1586
+ batch_size = input_ids.shape[0]
1587
+ else:
1588
+ batch_size = inputs_embeds.shape[0]
1589
+
1590
+ if self.config.pad_token_id is None and batch_size != 1:
1591
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1592
+ if self.config.pad_token_id is None:
1593
+ sequence_lengths = -1
1594
+ else:
1595
+ if input_ids is not None:
1596
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1597
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1598
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1599
+ sequence_lengths = sequence_lengths.to(logits.device)
1600
+ else:
1601
+ sequence_lengths = -1
1602
+
1603
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1604
+
1605
+ loss = None
1606
+ if labels is not None:
1607
+ labels = labels.to(logits.device)
1608
+ if self.config.problem_type is None:
1609
+ if self.num_labels == 1:
1610
+ self.config.problem_type = "regression"
1611
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1612
+ self.config.problem_type = "single_label_classification"
1613
+ else:
1614
+ self.config.problem_type = "multi_label_classification"
1615
+
1616
+ if self.config.problem_type == "regression":
1617
+ loss_fct = MSELoss()
1618
+ if self.num_labels == 1:
1619
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1620
+ else:
1621
+ loss = loss_fct(pooled_logits, labels)
1622
+ elif self.config.problem_type == "single_label_classification":
1623
+ loss_fct = CrossEntropyLoss()
1624
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1625
+ elif self.config.problem_type == "multi_label_classification":
1626
+ loss_fct = BCEWithLogitsLoss()
1627
+ loss = loss_fct(pooled_logits, labels)
1628
+ if not return_dict:
1629
+ output = (pooled_logits,) + transformer_outputs[1:]
1630
+ return ((loss,) + output) if loss is not None else output
1631
+
1632
+ return SequenceClassifierOutputWithPast(
1633
+ loss=loss,
1634
+ logits=pooled_logits,
1635
+ past_key_values=transformer_outputs.past_key_values,
1636
+ hidden_states=transformer_outputs.hidden_states,
1637
+ attentions=transformer_outputs.attentions,
1638
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 131072,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false
44
+ }