jaintarunAI
commited on
Commit
•
cefd69e
0
Parent(s):
initial model push
Browse files- .gitattributes +35 -0
- README.md +163 -0
- config.json +37 -0
- configuration_mistral.py +187 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- modeling_mistral_yarn.py +1638 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
---
|
5 |
+
|
6 |
+
<p align="center" style="font-size:34px;"><b>Buddhi-128K-Chat</b></p>
|
7 |
+
|
8 |
+
# Buddhi-128K-Chat (7B) vLLM Inference: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)
|
9 |
+
|
10 |
+
## Model Description
|
11 |
+
|
12 |
+
Buddhi-128k-Chat is a general-purpose first chat model with 128K context length window. It is meticulously fine-tuned on the Mistral 7B Instruct, and optimised to handle an extended context length of up to 128,000 tokens using the innovative YaRN (Yet another Rope Extension) Technique. This enhancement allows Buddhi to maintain a deeper understanding of context in long documents or conversations, making it particularly adept at tasks requiring extensive context retention, such as comprehensive document summarization, detailed narrative generation, and intricate question-answering.
|
13 |
+
|
14 |
+
## Dataset Creation
|
15 |
+
|
16 |
+
## Architecture
|
17 |
+
|
18 |
+
### Hardware requirements:
|
19 |
+
> For 128k Context Length
|
20 |
+
> - 80GB VRAM - A100 Preferred
|
21 |
+
|
22 |
+
> For 32k Context Length
|
23 |
+
> - 40GB VRAM - A100 Preferred
|
24 |
+
|
25 |
+
### vLLM - For Faster Inference
|
26 |
+
|
27 |
+
#### Installation
|
28 |
+
|
29 |
+
```
|
30 |
+
!pip install vllm
|
31 |
+
!pip install flash_attn # If Flash Attention 2 is supported by your System
|
32 |
+
```
|
33 |
+
Please check out [Flash Attention 2](https://github.com/Dao-AILab/flash-attention) Github Repository for more instructions on how to Install it.
|
34 |
+
|
35 |
+
**Implementation**:
|
36 |
+
|
37 |
+
> Note: The actual hardware requirements to run the model is roughly around 70GB VRAM. For experimentation, we are limiting the context length to 75K instead of 128K. This make it suitable for testing the model in 30-35 GB VRAM
|
38 |
+
|
39 |
+
```python
|
40 |
+
from vllm import LLM, SamplingParams
|
41 |
+
|
42 |
+
llm = LLM(
|
43 |
+
model='aiplanet/buddhi-128k-chat-7b',
|
44 |
+
trust_remote_code=True,
|
45 |
+
dtype = 'bfloat16',
|
46 |
+
gpu_memory_utilization=1,
|
47 |
+
max_model_len= 75000
|
48 |
+
)
|
49 |
+
|
50 |
+
prompts = [
|
51 |
+
"""<s> [INST] Please tell me a joke. [/INST] """,
|
52 |
+
"""<s> [INST] What is Machine Learning? [/INST] """
|
53 |
+
]
|
54 |
+
|
55 |
+
sampling_params = SamplingParams(
|
56 |
+
temperature=0.8,
|
57 |
+
top_p=0.95,
|
58 |
+
max_tokens=1000
|
59 |
+
)
|
60 |
+
|
61 |
+
outputs = llm.generate(prompts, sampling_params)
|
62 |
+
|
63 |
+
for output in outputs:
|
64 |
+
prompt = output.prompt
|
65 |
+
generated_text = output.outputs[0].text
|
66 |
+
print(generated_text)
|
67 |
+
print("\n\n")
|
68 |
+
|
69 |
+
# we have also attached a colab notebook, that contains: 2 more experimentations: Long Essay and Entire Book
|
70 |
+
```
|
71 |
+
|
72 |
+
For Output, do check out the colab notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/11_8W8FpKK-856QdRVJLyzbu9g-DMxNfg?usp=sharing)
|
73 |
+
|
74 |
+
### Transformers - Basic Implementation
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
import transformers
|
79 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
80 |
+
|
81 |
+
bnb_config = BitsAndBytesConfig(
|
82 |
+
load_in_4bit=True,
|
83 |
+
bnb_4bit_use_double_quant=True,
|
84 |
+
bnb_4bit_quant_type="nf4",
|
85 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
86 |
+
)
|
87 |
+
|
88 |
+
model_name = "aiplanet/Buddhi-128K-Chat"
|
89 |
+
|
90 |
+
model = AutoModelForCausalLM.from_pretrained(
|
91 |
+
model_name,
|
92 |
+
quantization_config=bnb_config,
|
93 |
+
device_map="sequential",
|
94 |
+
trust_remote_code=True
|
95 |
+
)
|
96 |
+
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
98 |
+
model,
|
99 |
+
trust_remote_code=True
|
100 |
+
)
|
101 |
+
|
102 |
+
prompt = "<s> [INST] Please tell me a small joke. [/INST] "
|
103 |
+
|
104 |
+
tokens = tokenizer(prompt, return_tensors="pt").to("cuda")
|
105 |
+
outputs = model.generate(
|
106 |
+
**tokens,
|
107 |
+
max_new_tokens=100,
|
108 |
+
do_sample=True,
|
109 |
+
top_p=0.95,
|
110 |
+
temperature=0.8,
|
111 |
+
)
|
112 |
+
|
113 |
+
decoded_output = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
114 |
+
print(f"Output:\n{decoded_output[len(prompt):]}")
|
115 |
+
```
|
116 |
+
|
117 |
+
Output
|
118 |
+
|
119 |
+
```
|
120 |
+
Output:
|
121 |
+
Why don't scientists trust atoms?
|
122 |
+
|
123 |
+
Because they make up everything.
|
124 |
+
```
|
125 |
+
|
126 |
+
|
127 |
+
## Prompt Template for Buddi-128-Chat
|
128 |
+
|
129 |
+
In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
|
130 |
+
|
131 |
+
```
|
132 |
+
"<s>[INST] What is your favourite condiment? [/INST]"
|
133 |
+
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
|
134 |
+
"[INST] Do you have mayonnaise recipes? [/INST]"
|
135 |
+
|
136 |
+
```
|
137 |
+
|
138 |
+
## Get in Touch
|
139 |
+
|
140 |
+
You can schedule a 1:1 meeting with our DevRel & Community Team to get started with AI Planet Open Source LLMs and GenAI Stack. Schedule the call here: [https://calendly.com/jaintarun](https://calendly.com/jaintarun)
|
141 |
+
|
142 |
+
Stay tuned for more updates and be a part of the coding evolution. Join us on this exciting journey as we make AI accessible to all at AI Planet!
|
143 |
+
|
144 |
+
|
145 |
+
### Framework versions
|
146 |
+
|
147 |
+
- Transformers 4.39.2
|
148 |
+
- Pytorch 2.2.1+cu121
|
149 |
+
- Datasets 2.18.0
|
150 |
+
- Accelerate 0.27.2
|
151 |
+
- flash_attn 2.5.6
|
152 |
+
|
153 |
+
### Citation
|
154 |
+
|
155 |
+
```
|
156 |
+
@misc {Chaitanya890, lucifertrj ,
|
157 |
+
author = { Chaitanya Singhal, Tarun Jain },
|
158 |
+
title = { Buddhi-128k-Chat by AI Planet},
|
159 |
+
year = 2024,
|
160 |
+
url = { https://huggingface.co/aiplanet//Buddhi-128K-Chat },
|
161 |
+
publisher = { Hugging Face }
|
162 |
+
}
|
163 |
+
```
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "aiplanet/buddhi-128k-chat-7b",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_mistral.MistralConfig",
|
9 |
+
"AutoModelForCausalLM": "modeling_mistral_yarn.MistralForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"hidden_act": "silu",
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 14336,
|
17 |
+
"max_position_embeddings": 131072,
|
18 |
+
"model_type": "mistral",
|
19 |
+
"num_attention_heads": 32,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"num_key_value_heads": 8,
|
22 |
+
"pad_token_id": 2,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": {
|
25 |
+
"factor": 4.0,
|
26 |
+
"finetuned": true,
|
27 |
+
"original_max_position_embeddings": 32768,
|
28 |
+
"type": "yarn"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": null,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.39.2",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 32000
|
37 |
+
}
|
configuration_mistral.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Mistral model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
25 |
+
"mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
class MistralConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
|
32 |
+
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
|
34 |
+
|
35 |
+
[mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
36 |
+
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
|
42 |
+
Args:
|
43 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
44 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
45 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
46 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
47 |
+
Dimension of the hidden representations.
|
48 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
49 |
+
Dimension of the MLP representations.
|
50 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
51 |
+
Number of hidden layers in the Transformer encoder.
|
52 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
53 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
55 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
56 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
57 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
58 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
59 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
60 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
64 |
+
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
|
65 |
+
allows sequence of up to 4096*32 tokens.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
The id of the padding token.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
The id of the "beginning-of-sequence" token.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
The id of the "end-of-sequence" token.
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether the model's input and output word embeddings should be tied.
|
81 |
+
rope_scaling (`Dict`, *optional*):
|
82 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
83 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
84 |
+
is `{"type": strategy name, "factor": scaling factor}`.
|
85 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
86 |
+
The base period of the RoPE embeddings.
|
87 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
88 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
89 |
+
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import MistralModel, MistralConfig
|
93 |
+
|
94 |
+
>>> # Initializing a Mistral 7B style configuration
|
95 |
+
>>> configuration = MistralConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model from the Mistral 7B style configuration
|
98 |
+
>>> model = MistralModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "mistral"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
vocab_size=32000,
|
110 |
+
hidden_size=4096,
|
111 |
+
intermediate_size=14336,
|
112 |
+
num_hidden_layers=32,
|
113 |
+
num_attention_heads=32,
|
114 |
+
num_key_value_heads=8,
|
115 |
+
hidden_act="silu",
|
116 |
+
max_position_embeddings=4096 * 32,
|
117 |
+
initializer_range=0.02,
|
118 |
+
rms_norm_eps=1e-6,
|
119 |
+
use_cache=True,
|
120 |
+
pad_token_id=None,
|
121 |
+
bos_token_id=1,
|
122 |
+
eos_token_id=2,
|
123 |
+
tie_word_embeddings=False,
|
124 |
+
rope_scaling={
|
125 |
+
"factor": 16.0,
|
126 |
+
"finetuned": True,
|
127 |
+
"original_max_position_embeddings": 8192,
|
128 |
+
"type": "dynamic-yarn"},
|
129 |
+
rope_theta=10000.0,
|
130 |
+
sliding_window=4096,
|
131 |
+
attention_dropout=0.0,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.intermediate_size = intermediate_size
|
138 |
+
self.num_hidden_layers = num_hidden_layers
|
139 |
+
self.num_attention_heads = num_attention_heads
|
140 |
+
self.sliding_window = sliding_window
|
141 |
+
|
142 |
+
# for backward compatibility
|
143 |
+
if num_key_value_heads is None:
|
144 |
+
num_key_value_heads = num_attention_heads
|
145 |
+
|
146 |
+
self.num_key_value_heads = num_key_value_heads
|
147 |
+
self.hidden_act = hidden_act
|
148 |
+
self.initializer_range = initializer_range
|
149 |
+
self.rms_norm_eps = rms_norm_eps
|
150 |
+
self.use_cache = use_cache
|
151 |
+
self.rope_scaling = rope_scaling
|
152 |
+
self.attention_dropout = attention_dropout
|
153 |
+
self.rope_theta = rope_theta
|
154 |
+
self._rope_scaling_validation()
|
155 |
+
|
156 |
+
super().__init__(
|
157 |
+
pad_token_id=pad_token_id,
|
158 |
+
bos_token_id=bos_token_id,
|
159 |
+
eos_token_id=eos_token_id,
|
160 |
+
tie_word_embeddings=tie_word_embeddings,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
def _rope_scaling_validation(self):
|
165 |
+
"""
|
166 |
+
Validate the `rope_scaling` configuration.
|
167 |
+
"""
|
168 |
+
if self.rope_scaling is None:
|
169 |
+
return
|
170 |
+
|
171 |
+
if not isinstance(self.rope_scaling, dict):
|
172 |
+
raise ValueError(
|
173 |
+
"`rope_scaling` must be a dictionary, "
|
174 |
+
f"got {self.rope_scaling}"
|
175 |
+
)
|
176 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
177 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
178 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]:
|
179 |
+
raise ValueError(
|
180 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}"
|
181 |
+
)
|
182 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
183 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
184 |
+
if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn":
|
185 |
+
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
|
186 |
+
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
|
187 |
+
raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.39.2"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a943387922f9aaed6acbb5a65f5faa1b9b6699d6024fc4a30a500558b17f9d1
|
3 |
+
size 4943162336
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d954d2cfd147440423ae9450874a6727e70c7d2a43c094b0542860a0a55934e8
|
3 |
+
size 4999819336
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9750f2739f3487b7d8b0e35b9b51e87a2181f7168eec2144c4c46afcffe64e9f
|
3 |
+
size 4540516344
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
modeling_mistral_yarn.py
ADDED
@@ -0,0 +1,1638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache
|
34 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
35 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.utils import (
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
is_flash_attn_greater_or_equal_2_10,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_mistral import MistralConfig
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CONFIG_FOR_DOC = "MistralConfig"
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
61 |
+
def _get_unpad_data(attention_mask):
|
62 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
63 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
64 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
65 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
66 |
+
return (
|
67 |
+
indices,
|
68 |
+
cu_seqlens,
|
69 |
+
max_seqlen_in_batch,
|
70 |
+
)
|
71 |
+
|
72 |
+
# Newly Added For YARN
|
73 |
+
|
74 |
+
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
75 |
+
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
|
76 |
+
|
77 |
+
# Find dim range bounds based on rotations
|
78 |
+
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
79 |
+
low = math.floor(_yarn_find_correction_dim(
|
80 |
+
low_rot, dim, base, max_position_embeddings))
|
81 |
+
high = math.ceil(_yarn_find_correction_dim(
|
82 |
+
high_rot, dim, base, max_position_embeddings))
|
83 |
+
return max(low, 0), min(high, dim-1) # Clamp values just in case
|
84 |
+
|
85 |
+
def _yarn_linear_ramp_mask(min, max, dim):
|
86 |
+
if min == max:
|
87 |
+
max += 0.001 # Prevent singularity
|
88 |
+
|
89 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
90 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
91 |
+
return ramp_func
|
92 |
+
|
93 |
+
def _yarn_get_mscale(scale=1):
|
94 |
+
if scale <= 1:
|
95 |
+
return 1.0
|
96 |
+
return 0.07 * math.log(scale) + 1.0
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
101 |
+
class MistralRMSNorm(nn.Module):
|
102 |
+
def __init__(self, hidden_size, eps=1e-6):
|
103 |
+
"""
|
104 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
105 |
+
"""
|
106 |
+
super().__init__()
|
107 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
108 |
+
self.variance_epsilon = eps
|
109 |
+
|
110 |
+
def forward(self, hidden_states):
|
111 |
+
input_dtype = hidden_states.dtype
|
112 |
+
hidden_states = hidden_states.to(torch.float32)
|
113 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
114 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
115 |
+
return self.weight * hidden_states.to(input_dtype)
|
116 |
+
|
117 |
+
|
118 |
+
# copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
119 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
120 |
+
class MistralRotaryEmbedding(nn.Module):
|
121 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
122 |
+
super().__init__()
|
123 |
+
|
124 |
+
self.dim = dim
|
125 |
+
self.max_position_embeddings = max_position_embeddings
|
126 |
+
self.base = base
|
127 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
128 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
129 |
+
|
130 |
+
# Build here to make `torch.jit.trace` work.
|
131 |
+
self._set_cos_sin_cache(
|
132 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
133 |
+
)
|
134 |
+
|
135 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
136 |
+
self.max_seq_len_cached = seq_len
|
137 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
138 |
+
|
139 |
+
freqs = torch.outer(t, self.inv_freq)
|
140 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
141 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
142 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
143 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
144 |
+
|
145 |
+
def forward(self, x, seq_len=None):
|
146 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
147 |
+
if seq_len > self.max_seq_len_cached:
|
148 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
149 |
+
|
150 |
+
return (
|
151 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
152 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
# Newly Added For YARN
|
157 |
+
class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding): #Positional Interpolation
|
158 |
+
"""MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
159 |
+
|
160 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
161 |
+
self.scaling_factor = scaling_factor
|
162 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
163 |
+
|
164 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
165 |
+
self.max_seq_len_cached = seq_len
|
166 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
167 |
+
t = t / self.scaling_factor
|
168 |
+
|
169 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
170 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
171 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
172 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
173 |
+
self.register_buffer("sin_cached", emb.cos().to(dtype), persistent=False)
|
174 |
+
|
175 |
+
|
176 |
+
# Newly Added For YARN
|
177 |
+
class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
|
178 |
+
"""MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
179 |
+
|
180 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
181 |
+
self.scaling_factor = scaling_factor
|
182 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
183 |
+
|
184 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
185 |
+
self.max_seq_len_cached = seq_len
|
186 |
+
|
187 |
+
if seq_len > self.max_position_embeddings:
|
188 |
+
base = self.base * ((self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)) ** (self.dim / (self.dim - 2))
|
189 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
190 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
191 |
+
|
192 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
193 |
+
|
194 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
195 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
196 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
197 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
198 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
199 |
+
|
200 |
+
|
201 |
+
# Newly Added For YARN
|
202 |
+
class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
|
203 |
+
"""MistralRotaryEmbedding extended with YaRN. See: https://arxiv.org/abs/2309.00071"""
|
204 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
|
205 |
+
extrapolation_factor=1, attn_factor=1, beta_fast=128, beta_slow=2, finetuned=False, device=None):
|
206 |
+
super().__init__()
|
207 |
+
|
208 |
+
self.dim = dim
|
209 |
+
self.max_position_embeddings = max_position_embeddings
|
210 |
+
self.base = base
|
211 |
+
self.scale = scale
|
212 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
213 |
+
self.extrapolation_factor = extrapolation_factor
|
214 |
+
self.attn_factor = attn_factor
|
215 |
+
self.beta_fast = beta_fast
|
216 |
+
self.beta_slow = beta_slow
|
217 |
+
|
218 |
+
self.yarn(device)
|
219 |
+
|
220 |
+
# Build here to make `torch.jit.trace` work.
|
221 |
+
self.max_seq_len_cached = max_position_embeddings
|
222 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
223 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
224 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
225 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
226 |
+
dtype = torch.get_default_dtype()
|
227 |
+
|
228 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
|
229 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
|
230 |
+
|
231 |
+
def forward(self, x, seq_len=None):
|
232 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
233 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
234 |
+
if seq_len > self.max_seq_len_cached:
|
235 |
+
self.max_seq_len_cached = seq_len
|
236 |
+
|
237 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
238 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
239 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
240 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
241 |
+
|
242 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
|
243 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
|
244 |
+
return (
|
245 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
246 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
247 |
+
)
|
248 |
+
|
249 |
+
def yarn(self, device):
|
250 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
251 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
252 |
+
inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
|
253 |
+
|
254 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
255 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
256 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
257 |
+
|
258 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
259 |
+
self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
260 |
+
|
261 |
+
|
262 |
+
# Newly Added For YARN
|
263 |
+
class MistralDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
|
264 |
+
"""MistralRotaryEmbedding extended with Dynamic YaRN. See: https://arxiv.org/abs/2309.00071"""
|
265 |
+
def __init__(
|
266 |
+
self,
|
267 |
+
dim,
|
268 |
+
max_position_embeddings=2048,
|
269 |
+
base=10000,
|
270 |
+
original_max_position_embeddings=2048,
|
271 |
+
extrapolation_factor=1,
|
272 |
+
attn_factor=1,
|
273 |
+
beta_fast=128,
|
274 |
+
beta_slow=2,
|
275 |
+
finetuned=False,
|
276 |
+
device=None
|
277 |
+
):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.dim = dim
|
281 |
+
self.max_position_embeddings = max_position_embeddings
|
282 |
+
self.base = base
|
283 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
284 |
+
self.extrapolation_factor = extrapolation_factor
|
285 |
+
self.attn_factor = attn_factor
|
286 |
+
self.beta_fast = beta_fast
|
287 |
+
self.beta_slow = beta_slow
|
288 |
+
|
289 |
+
if finetuned:
|
290 |
+
self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
|
291 |
+
else:
|
292 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
293 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
294 |
+
self.mscale = 1
|
295 |
+
|
296 |
+
# Build here to make `torch.jit.trace` work.
|
297 |
+
self.max_seq_len_cached = max_position_embeddings
|
298 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
299 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
300 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
301 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
302 |
+
dtype = torch.get_default_dtype()
|
303 |
+
|
304 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
|
305 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
|
306 |
+
|
307 |
+
def forward(self, x, seq_len=None):
|
308 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
309 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
310 |
+
if seq_len > self.max_seq_len_cached:
|
311 |
+
self.max_seq_len_cached = seq_len
|
312 |
+
|
313 |
+
self.yarn(seq_len / self.max_position_embeddings, x.device)
|
314 |
+
|
315 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
316 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
317 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
318 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
319 |
+
|
320 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(x.dtype), persistent=False)
|
321 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(x.dtype), persistent=False)
|
322 |
+
return (
|
323 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
324 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
325 |
+
)
|
326 |
+
|
327 |
+
def yarn(self, scale, device):
|
328 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
329 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
330 |
+
inv_freq_interpolation = 1.0 / (scale * pos_freqs)
|
331 |
+
|
332 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
333 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
334 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
335 |
+
|
336 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
337 |
+
self.mscale = float(_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
342 |
+
def rotate_half(x):
|
343 |
+
"""Rotates half the hidden dims of the input."""
|
344 |
+
x1 = x[..., : x.shape[-1] // 2]
|
345 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
346 |
+
return torch.cat((-x2, x1), dim=-1)
|
347 |
+
|
348 |
+
|
349 |
+
# copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
350 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
351 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
352 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
353 |
+
|
354 |
+
Args:
|
355 |
+
q (`torch.Tensor`): The query tensor.
|
356 |
+
k (`torch.Tensor`): The key tensor.
|
357 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
358 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
359 |
+
position_ids (`torch.Tensor`):
|
360 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
361 |
+
used to pass offsetted position ids when working with a KV-cache.
|
362 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
363 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
364 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
365 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
366 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
367 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
368 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
369 |
+
Returns:
|
370 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
371 |
+
"""
|
372 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
373 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
374 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
375 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
376 |
+
return q_embed, k_embed
|
377 |
+
|
378 |
+
|
379 |
+
class MistralMLP(nn.Module):
|
380 |
+
def __init__(self, config):
|
381 |
+
super().__init__()
|
382 |
+
self.config = config
|
383 |
+
self.hidden_size = config.hidden_size
|
384 |
+
self.intermediate_size = config.intermediate_size
|
385 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
386 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
387 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
388 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
389 |
+
|
390 |
+
def forward(self, x):
|
391 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
392 |
+
|
393 |
+
|
394 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
395 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
396 |
+
"""
|
397 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
398 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
399 |
+
"""
|
400 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
401 |
+
if n_rep == 1:
|
402 |
+
return hidden_states
|
403 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
404 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
405 |
+
|
406 |
+
|
407 |
+
class MistralAttention(nn.Module):
|
408 |
+
"""
|
409 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
410 |
+
and "Generating Long Sequences with Sparse Transformers".
|
411 |
+
"""
|
412 |
+
|
413 |
+
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
|
414 |
+
super().__init__()
|
415 |
+
self.config = config
|
416 |
+
self.layer_idx = layer_idx
|
417 |
+
if layer_idx is None:
|
418 |
+
logger.warning_once(
|
419 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
420 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
421 |
+
"when creating this class."
|
422 |
+
)
|
423 |
+
|
424 |
+
self.hidden_size = config.hidden_size
|
425 |
+
self.num_heads = config.num_attention_heads
|
426 |
+
self.head_dim = self.hidden_size // self.num_heads
|
427 |
+
self.num_key_value_heads = config.num_key_value_heads
|
428 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
429 |
+
self.max_position_embeddings = config.max_position_embeddings
|
430 |
+
self.rope_theta = config.rope_theta
|
431 |
+
self.is_causal = True
|
432 |
+
self.attention_dropout = config.attention_dropout
|
433 |
+
|
434 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
435 |
+
raise ValueError(
|
436 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
437 |
+
f" and `num_heads`: {self.num_heads})."
|
438 |
+
)
|
439 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
440 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
441 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
442 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
443 |
+
|
444 |
+
# self.rotary_emb = MistralRotaryEmbedding(
|
445 |
+
# self.head_dim,
|
446 |
+
# max_position_embeddings=self.max_position_embeddings,
|
447 |
+
# base=self.rope_theta,
|
448 |
+
# )
|
449 |
+
|
450 |
+
self._init_rope()
|
451 |
+
|
452 |
+
def _init_rope(self):
|
453 |
+
if self.config.rope_scaling is None:
|
454 |
+
self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta)
|
455 |
+
else:
|
456 |
+
scaling_type = self.config.rope_scaling["type"]
|
457 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
458 |
+
finetuned = self.config.rope_scaling['finetuned']
|
459 |
+
if scaling_type == "linear":
|
460 |
+
self.rotary_emb = MistralLinearScalingRotaryEmbedding(
|
461 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
462 |
+
scaling_factor=scaling_factor, base=self.rope_theta,
|
463 |
+
)
|
464 |
+
elif scaling_type == "dynamic":
|
465 |
+
self.rotary_emb = MistralDynamicNTKScalingRotaryEmbedding(
|
466 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor,
|
467 |
+
base=self.rope_theta,
|
468 |
+
)
|
469 |
+
elif scaling_type == "yarn":
|
470 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
471 |
+
self.rotary_emb = MistralYaRNScaledRotaryEmbedding(
|
472 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor,
|
473 |
+
original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta,
|
474 |
+
)
|
475 |
+
elif scaling_type == "dynamic-yarn":
|
476 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
477 |
+
self.rotary_emb = MistralDynamicYaRNScaledRotaryEmbedding(
|
478 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
479 |
+
original_max_position_embeddings=original_max_position_embeddings, base=self.rope_theta, finetuned=finetuned
|
480 |
+
)
|
481 |
+
else:
|
482 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
483 |
+
|
484 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
485 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
hidden_states: torch.Tensor,
|
490 |
+
attention_mask: Optional[torch.Tensor] = None,
|
491 |
+
position_ids: Optional[torch.LongTensor] = None,
|
492 |
+
past_key_value: Optional[Cache] = None,
|
493 |
+
output_attentions: bool = False,
|
494 |
+
use_cache: bool = False,
|
495 |
+
**kwargs,
|
496 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
497 |
+
|
498 |
+
if "padding_mask" in kwargs:
|
499 |
+
warnings.warn(
|
500 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
501 |
+
)
|
502 |
+
|
503 |
+
bsz, q_len, _ = hidden_states.size()
|
504 |
+
|
505 |
+
query_states = self.q_proj(hidden_states)
|
506 |
+
key_states = self.k_proj(hidden_states)
|
507 |
+
value_states = self.v_proj(hidden_states)
|
508 |
+
|
509 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
510 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
511 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
512 |
+
|
513 |
+
kv_seq_len = key_states.shape[-2]
|
514 |
+
if past_key_value is not None:
|
515 |
+
if self.layer_idx is None:
|
516 |
+
raise ValueError(
|
517 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
518 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
519 |
+
"with a layer index."
|
520 |
+
)
|
521 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
522 |
+
|
523 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
524 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
525 |
+
|
526 |
+
if past_key_value is not None:
|
527 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
528 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
529 |
+
|
530 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
531 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
532 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
533 |
+
|
534 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
535 |
+
|
536 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
537 |
+
raise ValueError(
|
538 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
539 |
+
f" {attn_weights.size()}"
|
540 |
+
)
|
541 |
+
|
542 |
+
if attention_mask is not None:
|
543 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
544 |
+
raise ValueError(
|
545 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
546 |
+
)
|
547 |
+
|
548 |
+
attn_weights = attn_weights + attention_mask
|
549 |
+
|
550 |
+
# upcast attention to fp32
|
551 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
552 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
553 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
554 |
+
|
555 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
556 |
+
raise ValueError(
|
557 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
558 |
+
f" {attn_output.size()}"
|
559 |
+
)
|
560 |
+
|
561 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
562 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
563 |
+
|
564 |
+
attn_output = self.o_proj(attn_output)
|
565 |
+
|
566 |
+
if not output_attentions:
|
567 |
+
attn_weights = None
|
568 |
+
|
569 |
+
return attn_output, attn_weights, past_key_value
|
570 |
+
|
571 |
+
|
572 |
+
class MistralFlashAttention2(MistralAttention):
|
573 |
+
"""
|
574 |
+
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
|
575 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
576 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
577 |
+
"""
|
578 |
+
|
579 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
580 |
+
def __init__(self, *args, **kwargs):
|
581 |
+
super().__init__(*args, **kwargs)
|
582 |
+
|
583 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
584 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
585 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
586 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
587 |
+
|
588 |
+
def forward(
|
589 |
+
self,
|
590 |
+
hidden_states: torch.Tensor,
|
591 |
+
attention_mask: Optional[torch.Tensor] = None,
|
592 |
+
position_ids: Optional[torch.LongTensor] = None,
|
593 |
+
past_key_value: Optional[Cache] = None,
|
594 |
+
output_attentions: bool = False,
|
595 |
+
use_cache: bool = False,
|
596 |
+
**kwargs,
|
597 |
+
):
|
598 |
+
if "padding_mask" in kwargs:
|
599 |
+
warnings.warn(
|
600 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure to use `attention_mask` instead.`"
|
601 |
+
)
|
602 |
+
|
603 |
+
# overwrite attention_mask with padding_mask
|
604 |
+
attention_mask = kwargs.pop("padding_mask")
|
605 |
+
bsz, q_len, _ = hidden_states.size()
|
606 |
+
|
607 |
+
query_states = self.q_proj(hidden_states)
|
608 |
+
key_states = self.k_proj(hidden_states)
|
609 |
+
value_states = self.v_proj(hidden_states)
|
610 |
+
|
611 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
612 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
613 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
614 |
+
|
615 |
+
kv_seq_len = key_states.shape[-2]
|
616 |
+
if past_key_value is not None:
|
617 |
+
if self.layer_idx is None:
|
618 |
+
raise ValueError(
|
619 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
620 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
621 |
+
"with a layer index."
|
622 |
+
)
|
623 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
624 |
+
|
625 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
626 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
627 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
628 |
+
|
629 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
630 |
+
|
631 |
+
use_sliding_windows = (
|
632 |
+
_flash_supports_window_size
|
633 |
+
and getattr(self.config, "sliding_window", None) is not None
|
634 |
+
and kv_seq_len > self.config.sliding_window
|
635 |
+
)
|
636 |
+
|
637 |
+
if not _flash_supports_window_size:
|
638 |
+
logger.warning_once(
|
639 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
640 |
+
" make sure to upgrade flash-attn library."
|
641 |
+
)
|
642 |
+
|
643 |
+
if past_key_value is not None:
|
644 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
645 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
646 |
+
if (
|
647 |
+
getattr(self.config, "sliding_window", None) is not None
|
648 |
+
and kv_seq_len > self.config.sliding_window
|
649 |
+
and cache_has_contents
|
650 |
+
):
|
651 |
+
slicing_tokens = 1 - self.config.sliding_window
|
652 |
+
|
653 |
+
past_key = past_key_value[self.layer_idx][0]
|
654 |
+
past_value = past_key_value[self.layer_idx][1]
|
655 |
+
|
656 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
657 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
658 |
+
|
659 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
660 |
+
raise ValueError(
|
661 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
662 |
+
f" {past_key.shape}"
|
663 |
+
)
|
664 |
+
|
665 |
+
if attention_mask is not None:
|
666 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
667 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
668 |
+
|
669 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
670 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
671 |
+
|
672 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
673 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
674 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
675 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
676 |
+
|
677 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
678 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
679 |
+
# cast them back in float16 just to be sure everything works as expected.
|
680 |
+
input_dtype = query_states.dtype
|
681 |
+
if input_dtype == torch.float32:
|
682 |
+
if torch.is_autocast_enabled():
|
683 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
684 |
+
# Handle the case where the model is quantized
|
685 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
686 |
+
target_dtype = self.config._pre_quantization_dtype
|
687 |
+
else:
|
688 |
+
target_dtype = self.q_proj.weight.dtype
|
689 |
+
|
690 |
+
logger.warning_once(
|
691 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
692 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
693 |
+
f" {target_dtype}."
|
694 |
+
)
|
695 |
+
|
696 |
+
query_states = query_states.to(target_dtype)
|
697 |
+
key_states = key_states.to(target_dtype)
|
698 |
+
value_states = value_states.to(target_dtype)
|
699 |
+
|
700 |
+
# Reashape to the expected shape for Flash Attention
|
701 |
+
query_states = query_states.transpose(1, 2)
|
702 |
+
key_states = key_states.transpose(1, 2)
|
703 |
+
value_states = value_states.transpose(1, 2)
|
704 |
+
|
705 |
+
attn_output = self._flash_attention_forward(
|
706 |
+
query_states,
|
707 |
+
key_states,
|
708 |
+
value_states,
|
709 |
+
attention_mask,
|
710 |
+
q_len,
|
711 |
+
dropout=dropout_rate,
|
712 |
+
use_sliding_windows=use_sliding_windows,
|
713 |
+
)
|
714 |
+
|
715 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
716 |
+
attn_output = self.o_proj(attn_output)
|
717 |
+
|
718 |
+
if not output_attentions:
|
719 |
+
attn_weights = None
|
720 |
+
|
721 |
+
return attn_output, attn_weights, past_key_value
|
722 |
+
|
723 |
+
def _flash_attention_forward(
|
724 |
+
self,
|
725 |
+
query_states,
|
726 |
+
key_states,
|
727 |
+
value_states,
|
728 |
+
attention_mask,
|
729 |
+
query_length,
|
730 |
+
dropout=0.0,
|
731 |
+
softmax_scale=None,
|
732 |
+
use_sliding_windows=False,
|
733 |
+
):
|
734 |
+
"""
|
735 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
736 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
737 |
+
|
738 |
+
Args:
|
739 |
+
query_states (`torch.Tensor`):
|
740 |
+
Input query states to be passed to Flash Attention API
|
741 |
+
key_states (`torch.Tensor`):
|
742 |
+
Input key states to be passed to Flash Attention API
|
743 |
+
value_states (`torch.Tensor`):
|
744 |
+
Input value states to be passed to Flash Attention API
|
745 |
+
attention_mask (`torch.Tensor`):
|
746 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
747 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
748 |
+
dropout (`int`, *optional*):
|
749 |
+
Attention dropout
|
750 |
+
softmax_scale (`float`, *optional*):
|
751 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
752 |
+
use_sliding_windows (`bool`, *optional*):
|
753 |
+
Whether to activate sliding window attention.
|
754 |
+
"""
|
755 |
+
if not self._flash_attn_uses_top_left_mask:
|
756 |
+
causal = self.is_causal
|
757 |
+
else:
|
758 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
759 |
+
causal = self.is_causal and query_length != 1
|
760 |
+
|
761 |
+
# Contains at least one padding token in the sequence
|
762 |
+
if attention_mask is not None:
|
763 |
+
batch_size = query_states.shape[0]
|
764 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
765 |
+
query_states, key_states, value_states, attention_mask, query_length
|
766 |
+
)
|
767 |
+
|
768 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
769 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
770 |
+
|
771 |
+
if not use_sliding_windows:
|
772 |
+
attn_output_unpad = flash_attn_varlen_func(
|
773 |
+
query_states,
|
774 |
+
key_states,
|
775 |
+
value_states,
|
776 |
+
cu_seqlens_q=cu_seqlens_q,
|
777 |
+
cu_seqlens_k=cu_seqlens_k,
|
778 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
779 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
780 |
+
dropout_p=dropout,
|
781 |
+
softmax_scale=softmax_scale,
|
782 |
+
causal=causal,
|
783 |
+
)
|
784 |
+
else:
|
785 |
+
attn_output_unpad = flash_attn_varlen_func(
|
786 |
+
query_states,
|
787 |
+
key_states,
|
788 |
+
value_states,
|
789 |
+
cu_seqlens_q=cu_seqlens_q,
|
790 |
+
cu_seqlens_k=cu_seqlens_k,
|
791 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
792 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
793 |
+
dropout_p=dropout,
|
794 |
+
softmax_scale=softmax_scale,
|
795 |
+
causal=causal,
|
796 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
797 |
+
)
|
798 |
+
|
799 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
800 |
+
else:
|
801 |
+
if not use_sliding_windows:
|
802 |
+
attn_output = flash_attn_func(
|
803 |
+
query_states,
|
804 |
+
key_states,
|
805 |
+
value_states,
|
806 |
+
dropout,
|
807 |
+
softmax_scale=softmax_scale,
|
808 |
+
causal=causal,
|
809 |
+
)
|
810 |
+
else:
|
811 |
+
attn_output = flash_attn_func(
|
812 |
+
query_states,
|
813 |
+
key_states,
|
814 |
+
value_states,
|
815 |
+
dropout,
|
816 |
+
softmax_scale=softmax_scale,
|
817 |
+
causal=causal,
|
818 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
819 |
+
)
|
820 |
+
|
821 |
+
return attn_output
|
822 |
+
|
823 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
824 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
825 |
+
|
826 |
+
# On the first iteration we need to properly re-create the padding mask
|
827 |
+
# by slicing it on the proper place
|
828 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
829 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
830 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
831 |
+
|
832 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
833 |
+
|
834 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
835 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
836 |
+
|
837 |
+
if query_length == kv_seq_len:
|
838 |
+
query_layer = index_first_axis(
|
839 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
840 |
+
)
|
841 |
+
cu_seqlens_q = cu_seqlens_k
|
842 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
843 |
+
indices_q = indices_k
|
844 |
+
elif query_length == 1:
|
845 |
+
max_seqlen_in_batch_q = 1
|
846 |
+
cu_seqlens_q = torch.arange(
|
847 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
848 |
+
) # There is a memcpy here, that is very bad.
|
849 |
+
indices_q = cu_seqlens_q[:-1]
|
850 |
+
query_layer = query_layer.squeeze(1)
|
851 |
+
else:
|
852 |
+
# The -q_len: slice assumes left padding.
|
853 |
+
attention_mask = attention_mask[:, -query_length:]
|
854 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
855 |
+
|
856 |
+
return (
|
857 |
+
query_layer,
|
858 |
+
key_layer,
|
859 |
+
value_layer,
|
860 |
+
indices_q,
|
861 |
+
(cu_seqlens_q, cu_seqlens_k),
|
862 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
863 |
+
)
|
864 |
+
|
865 |
+
|
866 |
+
# copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Mistral
|
867 |
+
# TODO @Arthur no longer copied from LLama after static cache
|
868 |
+
class MistralSdpaAttention(MistralAttention):
|
869 |
+
"""
|
870 |
+
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
871 |
+
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
872 |
+
SDPA API.
|
873 |
+
"""
|
874 |
+
|
875 |
+
# Adapted from MistralAttention.forward
|
876 |
+
def forward(
|
877 |
+
self,
|
878 |
+
hidden_states: torch.Tensor,
|
879 |
+
attention_mask: Optional[torch.Tensor] = None,
|
880 |
+
position_ids: Optional[torch.LongTensor] = None,
|
881 |
+
past_key_value: Optional[Cache] = None,
|
882 |
+
output_attentions: bool = False,
|
883 |
+
use_cache: bool = False,
|
884 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
885 |
+
if output_attentions:
|
886 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
887 |
+
logger.warning_once(
|
888 |
+
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
889 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
890 |
+
)
|
891 |
+
return super().forward(
|
892 |
+
hidden_states=hidden_states,
|
893 |
+
attention_mask=attention_mask,
|
894 |
+
position_ids=position_ids,
|
895 |
+
past_key_value=past_key_value,
|
896 |
+
output_attentions=output_attentions,
|
897 |
+
use_cache=use_cache,
|
898 |
+
)
|
899 |
+
|
900 |
+
bsz, q_len, _ = hidden_states.size()
|
901 |
+
|
902 |
+
query_states = self.q_proj(hidden_states)
|
903 |
+
key_states = self.k_proj(hidden_states)
|
904 |
+
value_states = self.v_proj(hidden_states)
|
905 |
+
|
906 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
907 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
908 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
909 |
+
|
910 |
+
kv_seq_len = key_states.shape[-2]
|
911 |
+
if past_key_value is not None:
|
912 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
913 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
914 |
+
|
915 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
916 |
+
|
917 |
+
if past_key_value is not None:
|
918 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
919 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
920 |
+
|
921 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
922 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
923 |
+
|
924 |
+
if attention_mask is not None:
|
925 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
926 |
+
raise ValueError(
|
927 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
928 |
+
)
|
929 |
+
|
930 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
931 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
932 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
933 |
+
query_states = query_states.contiguous()
|
934 |
+
key_states = key_states.contiguous()
|
935 |
+
value_states = value_states.contiguous()
|
936 |
+
|
937 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
938 |
+
query_states,
|
939 |
+
key_states,
|
940 |
+
value_states,
|
941 |
+
attn_mask=attention_mask,
|
942 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
943 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
944 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
945 |
+
)
|
946 |
+
|
947 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
948 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
949 |
+
|
950 |
+
attn_output = self.o_proj(attn_output)
|
951 |
+
|
952 |
+
return attn_output, None, past_key_value
|
953 |
+
|
954 |
+
|
955 |
+
MISTRAL_ATTENTION_CLASSES = {
|
956 |
+
"eager": MistralAttention,
|
957 |
+
"flash_attention_2": MistralFlashAttention2,
|
958 |
+
"sdpa": MistralSdpaAttention,
|
959 |
+
}
|
960 |
+
|
961 |
+
|
962 |
+
class MistralDecoderLayer(nn.Module):
|
963 |
+
def __init__(self, config: MistralConfig, layer_idx: int):
|
964 |
+
super().__init__()
|
965 |
+
self.hidden_size = config.hidden_size
|
966 |
+
|
967 |
+
if config._attn_implementation:
|
968 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
969 |
+
else:
|
970 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES['flash_attention_2'](config, layer_idx)
|
971 |
+
|
972 |
+
self.mlp = MistralMLP(config)
|
973 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
974 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
975 |
+
|
976 |
+
def forward(
|
977 |
+
self,
|
978 |
+
hidden_states: torch.Tensor,
|
979 |
+
attention_mask: Optional[torch.Tensor] = None,
|
980 |
+
position_ids: Optional[torch.LongTensor] = None,
|
981 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
982 |
+
output_attentions: Optional[bool] = False,
|
983 |
+
use_cache: Optional[bool] = False,
|
984 |
+
**kwargs,
|
985 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
986 |
+
if "padding_mask" in kwargs:
|
987 |
+
warnings.warn(
|
988 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
989 |
+
)
|
990 |
+
"""
|
991 |
+
Args:
|
992 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
993 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
994 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
995 |
+
output_attentions (`bool`, *optional*):
|
996 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
997 |
+
returned tensors for more detail.
|
998 |
+
use_cache (`bool`, *optional*):
|
999 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1000 |
+
(see `past_key_values`).
|
1001 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1002 |
+
"""
|
1003 |
+
|
1004 |
+
residual = hidden_states
|
1005 |
+
|
1006 |
+
hidden_states = self.input_layernorm(hidden_states)
|
1007 |
+
|
1008 |
+
# Self Attention
|
1009 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1010 |
+
hidden_states=hidden_states,
|
1011 |
+
attention_mask=attention_mask,
|
1012 |
+
position_ids=position_ids,
|
1013 |
+
past_key_value=past_key_value,
|
1014 |
+
output_attentions=output_attentions,
|
1015 |
+
use_cache=use_cache,
|
1016 |
+
)
|
1017 |
+
hidden_states = residual + hidden_states
|
1018 |
+
|
1019 |
+
# Fully Connected
|
1020 |
+
residual = hidden_states
|
1021 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1022 |
+
hidden_states = self.mlp(hidden_states)
|
1023 |
+
hidden_states = residual + hidden_states
|
1024 |
+
|
1025 |
+
outputs = (hidden_states,)
|
1026 |
+
|
1027 |
+
if output_attentions:
|
1028 |
+
outputs += (self_attn_weights,)
|
1029 |
+
|
1030 |
+
if use_cache:
|
1031 |
+
outputs += (present_key_value,)
|
1032 |
+
|
1033 |
+
return outputs
|
1034 |
+
|
1035 |
+
|
1036 |
+
MISTRAL_START_DOCSTRING = r"""
|
1037 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1038 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1039 |
+
etc.)
|
1040 |
+
|
1041 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1042 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1043 |
+
and behavior.
|
1044 |
+
|
1045 |
+
Parameters:
|
1046 |
+
config ([`MistralConfig`]):
|
1047 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
1048 |
+
load the weights associated with the model, only the configuration. Check out the
|
1049 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1050 |
+
"""
|
1051 |
+
|
1052 |
+
|
1053 |
+
@add_start_docstrings(
|
1054 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1055 |
+
MISTRAL_START_DOCSTRING,
|
1056 |
+
)
|
1057 |
+
class MistralPreTrainedModel(PreTrainedModel):
|
1058 |
+
config_class = MistralConfig
|
1059 |
+
base_model_prefix = "model"
|
1060 |
+
supports_gradient_checkpointing = True
|
1061 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
1062 |
+
_skip_keys_device_placement = "past_key_values"
|
1063 |
+
_supports_flash_attn_2 = True
|
1064 |
+
_supports_sdpa = True
|
1065 |
+
_supports_cache_class = True
|
1066 |
+
|
1067 |
+
def _init_weights(self, module):
|
1068 |
+
std = self.config.initializer_range
|
1069 |
+
if isinstance(module, nn.Linear):
|
1070 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1071 |
+
if module.bias is not None:
|
1072 |
+
module.bias.data.zero_()
|
1073 |
+
elif isinstance(module, nn.Embedding):
|
1074 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1075 |
+
if module.padding_idx is not None:
|
1076 |
+
module.weight.data[module.padding_idx].zero_()
|
1077 |
+
|
1078 |
+
|
1079 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
1080 |
+
Args:
|
1081 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1082 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1083 |
+
it.
|
1084 |
+
|
1085 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1086 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1087 |
+
|
1088 |
+
[What are input IDs?](../glossary#input-ids)
|
1089 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1090 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1091 |
+
|
1092 |
+
- 1 for tokens that are **not masked**,
|
1093 |
+
- 0 for tokens that are **masked**.
|
1094 |
+
|
1095 |
+
[What are attention masks?](../glossary#attention-mask)
|
1096 |
+
|
1097 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1098 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1099 |
+
|
1100 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1101 |
+
`past_key_values`).
|
1102 |
+
|
1103 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1104 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1105 |
+
information on the default strategy.
|
1106 |
+
|
1107 |
+
- 1 indicates the head is **not masked**,
|
1108 |
+
- 0 indicates the head is **masked**.
|
1109 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1110 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1111 |
+
config.n_positions - 1]`.
|
1112 |
+
|
1113 |
+
[What are position IDs?](../glossary#position-ids)
|
1114 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1115 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1116 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1117 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1118 |
+
|
1119 |
+
Two formats are allowed:
|
1120 |
+
- a [`~cache_utils.Cache`] instance;
|
1121 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1122 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1123 |
+
cache format.
|
1124 |
+
|
1125 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1126 |
+
legacy cache format will be returned.
|
1127 |
+
|
1128 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1129 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1130 |
+
of shape `(batch_size, sequence_length)`.
|
1131 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1132 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1133 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1134 |
+
model's internal embedding lookup matrix.
|
1135 |
+
use_cache (`bool`, *optional*):
|
1136 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1137 |
+
`past_key_values`).
|
1138 |
+
output_attentions (`bool`, *optional*):
|
1139 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1140 |
+
tensors for more detail.
|
1141 |
+
output_hidden_states (`bool`, *optional*):
|
1142 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1143 |
+
more detail.
|
1144 |
+
return_dict (`bool`, *optional*):
|
1145 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1146 |
+
"""
|
1147 |
+
|
1148 |
+
|
1149 |
+
@add_start_docstrings(
|
1150 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
1151 |
+
MISTRAL_START_DOCSTRING,
|
1152 |
+
)
|
1153 |
+
class MistralModel(MistralPreTrainedModel):
|
1154 |
+
"""
|
1155 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
1156 |
+
|
1157 |
+
Args:
|
1158 |
+
config: MistralConfig
|
1159 |
+
"""
|
1160 |
+
|
1161 |
+
def __init__(self, config: MistralConfig):
|
1162 |
+
super().__init__(config)
|
1163 |
+
self.padding_idx = config.pad_token_id
|
1164 |
+
self.vocab_size = config.vocab_size
|
1165 |
+
|
1166 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1167 |
+
self.layers = nn.ModuleList(
|
1168 |
+
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1169 |
+
)
|
1170 |
+
self._attn_implementation = config._attn_implementation
|
1171 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1172 |
+
|
1173 |
+
self.gradient_checkpointing = False
|
1174 |
+
# Initialize weights and apply final processing
|
1175 |
+
self.post_init()
|
1176 |
+
|
1177 |
+
def get_input_embeddings(self):
|
1178 |
+
return self.embed_tokens
|
1179 |
+
|
1180 |
+
def set_input_embeddings(self, value):
|
1181 |
+
self.embed_tokens = value
|
1182 |
+
|
1183 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1184 |
+
def forward(
|
1185 |
+
self,
|
1186 |
+
input_ids: torch.LongTensor = None,
|
1187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1188 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1189 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1190 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1191 |
+
use_cache: Optional[bool] = None,
|
1192 |
+
output_attentions: Optional[bool] = None,
|
1193 |
+
output_hidden_states: Optional[bool] = None,
|
1194 |
+
return_dict: Optional[bool] = None,
|
1195 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1196 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1197 |
+
output_hidden_states = (
|
1198 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1199 |
+
)
|
1200 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1201 |
+
|
1202 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1203 |
+
|
1204 |
+
# retrieve input_ids and inputs_embeds
|
1205 |
+
if input_ids is not None and inputs_embeds is not None:
|
1206 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1207 |
+
elif input_ids is not None:
|
1208 |
+
batch_size, seq_length = input_ids.shape
|
1209 |
+
elif inputs_embeds is not None:
|
1210 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1211 |
+
else:
|
1212 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1213 |
+
|
1214 |
+
if self.gradient_checkpointing and self.training:
|
1215 |
+
if use_cache:
|
1216 |
+
logger.warning_once(
|
1217 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1218 |
+
)
|
1219 |
+
use_cache = False
|
1220 |
+
|
1221 |
+
past_key_values_length = 0
|
1222 |
+
|
1223 |
+
if use_cache:
|
1224 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1225 |
+
if use_legacy_cache:
|
1226 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1227 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1228 |
+
|
1229 |
+
if position_ids is None:
|
1230 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1231 |
+
position_ids = torch.arange(
|
1232 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1233 |
+
)
|
1234 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1235 |
+
else:
|
1236 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1237 |
+
|
1238 |
+
if inputs_embeds is None:
|
1239 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1240 |
+
|
1241 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1242 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1243 |
+
if is_padding_right:
|
1244 |
+
raise ValueError(
|
1245 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1246 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
1247 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
if self._attn_implementation == "flash_attention_2":
|
1251 |
+
# 2d mask is passed through the layers
|
1252 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1253 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1254 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1255 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1256 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1257 |
+
attention_mask,
|
1258 |
+
(batch_size, seq_length),
|
1259 |
+
inputs_embeds,
|
1260 |
+
past_key_values_length,
|
1261 |
+
)
|
1262 |
+
else:
|
1263 |
+
# 4d mask is passed through the layers
|
1264 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1265 |
+
attention_mask,
|
1266 |
+
(batch_size, seq_length),
|
1267 |
+
inputs_embeds,
|
1268 |
+
past_key_values_length,
|
1269 |
+
sliding_window=self.config.sliding_window,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
hidden_states = inputs_embeds
|
1273 |
+
|
1274 |
+
# decoder layers
|
1275 |
+
all_hidden_states = () if output_hidden_states else None
|
1276 |
+
all_self_attns = () if output_attentions else None
|
1277 |
+
next_decoder_cache = None
|
1278 |
+
|
1279 |
+
for decoder_layer in self.layers:
|
1280 |
+
if output_hidden_states:
|
1281 |
+
all_hidden_states += (hidden_states,)
|
1282 |
+
|
1283 |
+
if self.gradient_checkpointing and self.training:
|
1284 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1285 |
+
decoder_layer.__call__,
|
1286 |
+
hidden_states,
|
1287 |
+
attention_mask,
|
1288 |
+
position_ids,
|
1289 |
+
past_key_values,
|
1290 |
+
output_attentions,
|
1291 |
+
use_cache,
|
1292 |
+
)
|
1293 |
+
else:
|
1294 |
+
layer_outputs = decoder_layer(
|
1295 |
+
hidden_states,
|
1296 |
+
attention_mask=attention_mask,
|
1297 |
+
position_ids=position_ids,
|
1298 |
+
past_key_value=past_key_values,
|
1299 |
+
output_attentions=output_attentions,
|
1300 |
+
use_cache=use_cache,
|
1301 |
+
)
|
1302 |
+
|
1303 |
+
hidden_states = layer_outputs[0]
|
1304 |
+
|
1305 |
+
if use_cache:
|
1306 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1307 |
+
|
1308 |
+
if output_attentions:
|
1309 |
+
all_self_attns += (layer_outputs[1],)
|
1310 |
+
|
1311 |
+
hidden_states = self.norm(hidden_states)
|
1312 |
+
|
1313 |
+
# add hidden states from the last decoder layer
|
1314 |
+
if output_hidden_states:
|
1315 |
+
all_hidden_states += (hidden_states,)
|
1316 |
+
|
1317 |
+
next_cache = None
|
1318 |
+
if use_cache:
|
1319 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1320 |
+
|
1321 |
+
if not return_dict:
|
1322 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1323 |
+
return BaseModelOutputWithPast(
|
1324 |
+
last_hidden_state=hidden_states,
|
1325 |
+
past_key_values=next_cache,
|
1326 |
+
hidden_states=all_hidden_states,
|
1327 |
+
attentions=all_self_attns,
|
1328 |
+
)
|
1329 |
+
|
1330 |
+
|
1331 |
+
class MistralForCausalLM(MistralPreTrainedModel):
|
1332 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1333 |
+
|
1334 |
+
def __init__(self, config):
|
1335 |
+
super().__init__(config)
|
1336 |
+
self.model = MistralModel(config)
|
1337 |
+
self.vocab_size = config.vocab_size
|
1338 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1339 |
+
|
1340 |
+
# Initialize weights and apply final processing
|
1341 |
+
self.post_init()
|
1342 |
+
|
1343 |
+
def get_input_embeddings(self):
|
1344 |
+
return self.model.embed_tokens
|
1345 |
+
|
1346 |
+
def set_input_embeddings(self, value):
|
1347 |
+
self.model.embed_tokens = value
|
1348 |
+
|
1349 |
+
def get_output_embeddings(self):
|
1350 |
+
return self.lm_head
|
1351 |
+
|
1352 |
+
def set_output_embeddings(self, new_embeddings):
|
1353 |
+
self.lm_head = new_embeddings
|
1354 |
+
|
1355 |
+
def set_decoder(self, decoder):
|
1356 |
+
self.model = decoder
|
1357 |
+
|
1358 |
+
def get_decoder(self):
|
1359 |
+
return self.model
|
1360 |
+
|
1361 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1362 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1363 |
+
def forward(
|
1364 |
+
self,
|
1365 |
+
input_ids: torch.LongTensor = None,
|
1366 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1367 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1368 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1369 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1370 |
+
labels: Optional[torch.LongTensor] = None,
|
1371 |
+
use_cache: Optional[bool] = None,
|
1372 |
+
output_attentions: Optional[bool] = None,
|
1373 |
+
output_hidden_states: Optional[bool] = None,
|
1374 |
+
return_dict: Optional[bool] = None,
|
1375 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1376 |
+
r"""
|
1377 |
+
Args:
|
1378 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1379 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1380 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1381 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1382 |
+
|
1383 |
+
Returns:
|
1384 |
+
|
1385 |
+
Example:
|
1386 |
+
|
1387 |
+
```python
|
1388 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
1389 |
+
|
1390 |
+
>>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
|
1391 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
|
1392 |
+
|
1393 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1394 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1395 |
+
|
1396 |
+
>>> # Generate
|
1397 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1398 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1399 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1400 |
+
```"""
|
1401 |
+
|
1402 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1403 |
+
output_hidden_states = (
|
1404 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1405 |
+
)
|
1406 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1407 |
+
|
1408 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1409 |
+
outputs = self.model(
|
1410 |
+
input_ids=input_ids,
|
1411 |
+
attention_mask=attention_mask,
|
1412 |
+
position_ids=position_ids,
|
1413 |
+
past_key_values=past_key_values,
|
1414 |
+
inputs_embeds=inputs_embeds,
|
1415 |
+
use_cache=use_cache,
|
1416 |
+
output_attentions=output_attentions,
|
1417 |
+
output_hidden_states=output_hidden_states,
|
1418 |
+
return_dict=return_dict,
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
hidden_states = outputs[0]
|
1422 |
+
logits = self.lm_head(hidden_states)
|
1423 |
+
logits = logits.float()
|
1424 |
+
|
1425 |
+
loss = None
|
1426 |
+
if labels is not None:
|
1427 |
+
# Shift so that tokens < n predict n
|
1428 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1429 |
+
shift_labels = labels[..., 1:].contiguous()
|
1430 |
+
# Flatten the tokens
|
1431 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1432 |
+
shift_labels = shift_labels.view(-1)
|
1433 |
+
# Ensure tensors are on the same device
|
1434 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1435 |
+
loss_fct = CrossEntropyLoss()
|
1436 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1437 |
+
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (logits,) + outputs[1:]
|
1440 |
+
return (loss,) + output if loss is not None else output
|
1441 |
+
|
1442 |
+
return CausalLMOutputWithPast(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=logits,
|
1445 |
+
past_key_values=outputs.past_key_values,
|
1446 |
+
hidden_states=outputs.hidden_states,
|
1447 |
+
attentions=outputs.attentions,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
def prepare_inputs_for_generation(
|
1451 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1452 |
+
):
|
1453 |
+
# Omit tokens covered by past_key_values
|
1454 |
+
if past_key_values is not None:
|
1455 |
+
if isinstance(past_key_values, Cache):
|
1456 |
+
cache_length = past_key_values.get_seq_length()
|
1457 |
+
past_length = past_key_values.seen_tokens
|
1458 |
+
max_cache_length = past_key_values.get_max_length()
|
1459 |
+
else:
|
1460 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1461 |
+
max_cache_length = None
|
1462 |
+
|
1463 |
+
# Keep only the unprocessed tokens:
|
1464 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1465 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1466 |
+
# input)
|
1467 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1468 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1469 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1470 |
+
# input_ids based on the past_length.
|
1471 |
+
elif past_length < input_ids.shape[1]:
|
1472 |
+
input_ids = input_ids[:, past_length:]
|
1473 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1474 |
+
|
1475 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1476 |
+
if (
|
1477 |
+
max_cache_length is not None
|
1478 |
+
and attention_mask is not None
|
1479 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1480 |
+
):
|
1481 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1482 |
+
|
1483 |
+
position_ids = kwargs.get("position_ids", None)
|
1484 |
+
if attention_mask is not None and position_ids is None:
|
1485 |
+
# create position_ids on the fly for batch generation
|
1486 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1487 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1488 |
+
if past_key_values:
|
1489 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1490 |
+
|
1491 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1492 |
+
if inputs_embeds is not None and past_key_values is None:
|
1493 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1494 |
+
else:
|
1495 |
+
model_inputs = {"input_ids": input_ids}
|
1496 |
+
|
1497 |
+
model_inputs.update(
|
1498 |
+
{
|
1499 |
+
"position_ids": position_ids,
|
1500 |
+
"past_key_values": past_key_values,
|
1501 |
+
"use_cache": kwargs.get("use_cache"),
|
1502 |
+
"attention_mask": attention_mask,
|
1503 |
+
}
|
1504 |
+
)
|
1505 |
+
return model_inputs
|
1506 |
+
|
1507 |
+
@staticmethod
|
1508 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1509 |
+
reordered_past = ()
|
1510 |
+
for layer_past in past_key_values:
|
1511 |
+
reordered_past += (
|
1512 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1513 |
+
)
|
1514 |
+
return reordered_past
|
1515 |
+
|
1516 |
+
|
1517 |
+
@add_start_docstrings(
|
1518 |
+
"""
|
1519 |
+
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
1520 |
+
|
1521 |
+
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1522 |
+
(e.g. GPT-2) do.
|
1523 |
+
|
1524 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1525 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1526 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1527 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1528 |
+
each row of the batch).
|
1529 |
+
""",
|
1530 |
+
MISTRAL_START_DOCSTRING,
|
1531 |
+
)
|
1532 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL
|
1533 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
1534 |
+
def __init__(self, config):
|
1535 |
+
super().__init__(config)
|
1536 |
+
self.num_labels = config.num_labels
|
1537 |
+
self.model = MistralModel(config)
|
1538 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1539 |
+
|
1540 |
+
# Initialize weights and apply final processing
|
1541 |
+
self.post_init()
|
1542 |
+
|
1543 |
+
def get_input_embeddings(self):
|
1544 |
+
return self.model.embed_tokens
|
1545 |
+
|
1546 |
+
def set_input_embeddings(self, value):
|
1547 |
+
self.model.embed_tokens = value
|
1548 |
+
|
1549 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1550 |
+
def forward(
|
1551 |
+
self,
|
1552 |
+
input_ids: torch.LongTensor = None,
|
1553 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1554 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1555 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1556 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1557 |
+
labels: Optional[torch.LongTensor] = None,
|
1558 |
+
use_cache: Optional[bool] = None,
|
1559 |
+
output_attentions: Optional[bool] = None,
|
1560 |
+
output_hidden_states: Optional[bool] = None,
|
1561 |
+
return_dict: Optional[bool] = None,
|
1562 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1563 |
+
r"""
|
1564 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1565 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1566 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1567 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1568 |
+
"""
|
1569 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1570 |
+
|
1571 |
+
transformer_outputs = self.model(
|
1572 |
+
input_ids,
|
1573 |
+
attention_mask=attention_mask,
|
1574 |
+
position_ids=position_ids,
|
1575 |
+
past_key_values=past_key_values,
|
1576 |
+
inputs_embeds=inputs_embeds,
|
1577 |
+
use_cache=use_cache,
|
1578 |
+
output_attentions=output_attentions,
|
1579 |
+
output_hidden_states=output_hidden_states,
|
1580 |
+
return_dict=return_dict,
|
1581 |
+
)
|
1582 |
+
hidden_states = transformer_outputs[0]
|
1583 |
+
logits = self.score(hidden_states)
|
1584 |
+
|
1585 |
+
if input_ids is not None:
|
1586 |
+
batch_size = input_ids.shape[0]
|
1587 |
+
else:
|
1588 |
+
batch_size = inputs_embeds.shape[0]
|
1589 |
+
|
1590 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1591 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1592 |
+
if self.config.pad_token_id is None:
|
1593 |
+
sequence_lengths = -1
|
1594 |
+
else:
|
1595 |
+
if input_ids is not None:
|
1596 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1597 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1598 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1599 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1600 |
+
else:
|
1601 |
+
sequence_lengths = -1
|
1602 |
+
|
1603 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1604 |
+
|
1605 |
+
loss = None
|
1606 |
+
if labels is not None:
|
1607 |
+
labels = labels.to(logits.device)
|
1608 |
+
if self.config.problem_type is None:
|
1609 |
+
if self.num_labels == 1:
|
1610 |
+
self.config.problem_type = "regression"
|
1611 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1612 |
+
self.config.problem_type = "single_label_classification"
|
1613 |
+
else:
|
1614 |
+
self.config.problem_type = "multi_label_classification"
|
1615 |
+
|
1616 |
+
if self.config.problem_type == "regression":
|
1617 |
+
loss_fct = MSELoss()
|
1618 |
+
if self.num_labels == 1:
|
1619 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1620 |
+
else:
|
1621 |
+
loss = loss_fct(pooled_logits, labels)
|
1622 |
+
elif self.config.problem_type == "single_label_classification":
|
1623 |
+
loss_fct = CrossEntropyLoss()
|
1624 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1625 |
+
elif self.config.problem_type == "multi_label_classification":
|
1626 |
+
loss_fct = BCEWithLogitsLoss()
|
1627 |
+
loss = loss_fct(pooled_logits, labels)
|
1628 |
+
if not return_dict:
|
1629 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1630 |
+
return ((loss,) + output) if loss is not None else output
|
1631 |
+
|
1632 |
+
return SequenceClassifierOutputWithPast(
|
1633 |
+
loss=loss,
|
1634 |
+
logits=pooled_logits,
|
1635 |
+
past_key_values=transformer_outputs.past_key_values,
|
1636 |
+
hidden_states=transformer_outputs.hidden_states,
|
1637 |
+
attentions=transformer_outputs.attentions,
|
1638 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [],
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 131072,
|
37 |
+
"pad_token": "</s>",
|
38 |
+
"padding_side": "right",
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "LlamaTokenizer",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|