--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - vihangd/DopeyTinyLlama-1.1B-v1 - Tensoic/TinyLlama-1.1B-3T-openhermes base_model: - vihangd/DopeyTinyLlama-1.1B-v1 - Tensoic/TinyLlama-1.1B-3T-openhermes --- # Dopey-karasu-MoE3 Dopey-karasu-MoE3 is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [vihangd/DopeyTinyLlama-1.1B-v1](https://huggingface.co/vihangd/DopeyTinyLlama-1.1B-v1) * [Tensoic/TinyLlama-1.1B-3T-openhermes](https://huggingface.co/Tensoic/TinyLlama-1.1B-3T-openhermes) ## 🧩 Configuration ```yaml base_model: vihangd/DopeyTinyLlama-1.1B-v1 experts: - source_model: vihangd/DopeyTinyLlama-1.1B-v1 positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - source_model: Tensoic/TinyLlama-1.1B-3T-openhermes positive_prompts: - "reason" - "provide" - "instruct" - "summarize" - "count" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/Dopey-karasu-MoE3" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```