--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.3 model-index: - name: mistral-sql-create-context-lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.3 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: b-mc2/sql-create-context type: # JSONL file contains question, context, answer fields per line. # This gets mapped to instruction, input, output axolotl tags. field_instruction: question field_input: context field_output: answer # Format is used by axolotl to generate the prompt. format: |- [INST] Using the schema context below, generate a SQL query that answers the question. {input} {instruction} [/INST] tokens: # add new control tokens from the dataset to the model - "[INST]" - " [/INST]" - "[SQL]" - " [/SQL]" dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/mistral-sql-create-context-lora hub_model_id: ahmedsamirio/mistral-sql-create-context-lora # This is set to 4096 in the modal config, why? # Since I'm using sample packing, decreasing the sequence length will create smaller batches # which can fit better into memory sequence_len: 8192 # These is set to false in the modal example, why? (Modal also uses FSDP which might be a reason) sample_packing: true eval_sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: mistral-sql-create-context wandb_entity: ahmedsamirio wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 4 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true # What is this? loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: # This wasn't set in modal config eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```