ahmedheakl
commited on
Commit
•
b5a7011
1
Parent(s):
cd68dfa
Update README.md
Browse files
README.md
CHANGED
@@ -13,6 +13,71 @@ metrics:
|
|
13 |
pipeline_tag: text-classification
|
14 |
---
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Model Card for Model ID
|
17 |
|
18 |
**Please see paper & code for more information:**
|
|
|
13 |
pipeline_tag: text-classification
|
14 |
---
|
15 |
|
16 |
+
# How to use
|
17 |
+
|
18 |
+
In this example, we do an inference on a sample from our dataset (_ResumeAtlas_). You can increase `max_length` for more accurate predictions.
|
19 |
+
|
20 |
+
```python
|
21 |
+
!pip install datasets
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
26 |
+
from datasets import load_dataset
|
27 |
+
from sklearn import preprocessing
|
28 |
+
|
29 |
+
dataset_id='ahmedheakl/resume-atlas'
|
30 |
+
model_id='ahmedheakl/bert-resume-classification'
|
31 |
+
label_column = "Category"
|
32 |
+
num_labels=43
|
33 |
+
output_attentions=False
|
34 |
+
output_hidden_states=False
|
35 |
+
do_lower_case=True
|
36 |
+
add_special_tokens=True
|
37 |
+
max_length=512
|
38 |
+
pad_to_max_length=True
|
39 |
+
return_attention_mask=True
|
40 |
+
truncation=True
|
41 |
+
|
42 |
+
ds = load_dataset(dataset_id, trust_remote_code=True)
|
43 |
+
|
44 |
+
le = preprocessing.LabelEncoder()
|
45 |
+
le.fit(ds['train'][label_column])
|
46 |
+
|
47 |
+
|
48 |
+
tokenizer = BertTokenizer.from_pretrained(model_id, do_lower_case=do_lower_case)
|
49 |
+
model = BertForSequenceClassification.from_pretrained(
|
50 |
+
model_id,
|
51 |
+
num_labels = num_labels,
|
52 |
+
output_attentions = output_attentions,
|
53 |
+
output_hidden_states = output_hidden_states,
|
54 |
+
)
|
55 |
+
|
56 |
+
model = model.to('cuda').eval()
|
57 |
+
sent = ds['train'][0]['Text']
|
58 |
+
|
59 |
+
encoded_dict = tokenizer.encode_plus(
|
60 |
+
sent,
|
61 |
+
add_special_tokens=add_special_tokens,
|
62 |
+
max_length=max_length,
|
63 |
+
pad_to_max_length=pad_to_max_length,
|
64 |
+
return_attention_mask=return_attention_mask,
|
65 |
+
return_tensors='pt',
|
66 |
+
truncation=truncation,
|
67 |
+
)
|
68 |
+
input_ids = encoded_dict['input_ids'].to('cuda')
|
69 |
+
attention_mask = encoded_dict['attention_mask'].to('cuda')
|
70 |
+
|
71 |
+
outputs = model(
|
72 |
+
input_ids,
|
73 |
+
token_type_ids=None,
|
74 |
+
attention_mask=attention_mask
|
75 |
+
)
|
76 |
+
|
77 |
+
label_id = np.argmax(outputs['logits'].cpu().detach().tolist(), axis=1)
|
78 |
+
print(f'Predicted: {le.inverse_transform(label_id)[0]} | Ground: {ds["train"][0][label_column]}')
|
79 |
+
```
|
80 |
+
|
81 |
# Model Card for Model ID
|
82 |
|
83 |
**Please see paper & code for more information:**
|