--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6375 --- # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1228 - Accuracy: 0.6375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2101 | 1.0 | 20 | 1.3528 | 0.5062 | | 1.0583 | 2.0 | 40 | 1.3027 | 0.5312 | | 0.9272 | 3.0 | 60 | 1.2388 | 0.5625 | | 0.7279 | 4.0 | 80 | 1.2505 | 0.5625 | | 0.6103 | 5.0 | 100 | 1.2658 | 0.4938 | | 0.5925 | 6.0 | 120 | 1.2039 | 0.5375 | | 0.4836 | 7.0 | 140 | 1.3076 | 0.5062 | | 0.4743 | 8.0 | 160 | 1.2393 | 0.55 | | 0.3937 | 9.0 | 180 | 1.1658 | 0.5813 | | 0.3831 | 10.0 | 200 | 1.2273 | 0.55 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1