End of training
Browse files
README.md
CHANGED
@@ -1,53 +1,58 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
## Model
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
- **Language(s) (NLP):** en
|
24 |
-
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-ft-widgetcap-448
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
|
39 |
-
```python
|
40 |
-
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
41 |
|
42 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-widgetcap-waveui-448").eval()
|
43 |
-
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-448")
|
44 |
-
```
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
We will release a full evaluation report along with the full WebUI dataset. Stay tuned! :)
|
|
|
1 |
---
|
2 |
+
base_model: google/paligemma-3b-ft-widgetcap-448
|
3 |
+
library_name: peft
|
4 |
+
license: gemma
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: paligemma-3b-ft-widgetcap-waveui-448
|
9 |
+
results: []
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/kentauros/paligemma-waveui/runs/hfa841vp)
|
16 |
+
# paligemma-3b-ft-widgetcap-waveui-448
|
17 |
|
18 |
+
This model is a fine-tuned version of [google/paligemma-3b-ft-widgetcap-448](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) on an unknown dataset.
|
19 |
|
20 |
+
## Model description
|
21 |
|
22 |
+
More information needed
|
23 |
|
24 |
+
## Intended uses & limitations
|
25 |
|
26 |
+
More information needed
|
27 |
|
28 |
+
## Training and evaluation data
|
|
|
|
|
29 |
|
30 |
+
More information needed
|
31 |
|
32 |
+
## Training procedure
|
33 |
|
34 |
+
### Training hyperparameters
|
35 |
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0001
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 16
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 2
|
46 |
+
- num_epochs: 3
|
47 |
|
48 |
+
### Training results
|
49 |
|
|
|
|
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
+
### Framework versions
|
53 |
|
54 |
+
- PEFT 0.11.1
|
55 |
+
- Transformers 4.43.2
|
56 |
+
- Pytorch 2.4.0+cu121
|
57 |
+
- Datasets 2.20.0
|
58 |
+
- Tokenizers 0.19.1
|
|