nph4rd commited on
Commit
702023b
1 Parent(s): de4a796

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -39
README.md CHANGED
@@ -1,58 +1,52 @@
1
  ---
2
- base_model: google/paligemma-3b-ft-widgetcap-448
3
- library_name: peft
4
- license: gemma
5
- tags:
6
- - generated_from_trainer
7
- model-index:
8
- - name: paligemma-3b-ft-widgetcap-waveui-448
9
- results: []
10
  ---
11
 
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
 
15
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/kentauros/paligemma-waveui/runs/hfa841vp)
16
- # paligemma-3b-ft-widgetcap-waveui-448
17
 
18
- This model is a fine-tuned version of [google/paligemma-3b-ft-widgetcap-448](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) on an unknown dataset.
19
 
20
- ## Model description
21
 
22
- More information needed
23
 
24
- ## Intended uses & limitations
25
 
26
- More information needed
27
 
28
- ## Training and evaluation data
 
 
29
 
30
- More information needed
31
 
32
- ## Training procedure
33
 
34
- ### Training hyperparameters
35
 
36
- The following hyperparameters were used during training:
37
- - learning_rate: 0.0001
38
- - train_batch_size: 4
39
- - eval_batch_size: 8
40
- - seed: 42
41
- - gradient_accumulation_steps: 4
42
- - total_train_batch_size: 16
43
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
- - lr_scheduler_type: linear
45
- - lr_scheduler_warmup_steps: 2
46
- - num_epochs: 3
47
 
48
- ### Training results
49
 
 
 
50
 
 
 
 
51
 
52
- ### Framework versions
53
 
54
- - PEFT 0.11.1
55
- - Transformers 4.43.2
56
- - Pytorch 2.4.0+cu121
57
- - Datasets 2.20.0
58
- - Tokenizers 0.19.1
 
 
1
  ---
2
+ library_name: transformers
3
+ datasets:
4
+ - agentsea/wave-ui-25k
5
+ language:
6
+ - en
 
 
 
7
  ---
8
 
9
+ # Paligemma WaveUI
 
10
 
 
 
11
 
12
+ Transformers [PaliGemma 3B 448-res weights](https://huggingface.co/google/paligemma-3b-pt-448), fine-tuned on the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for object-detection.
13
 
14
+ ## Model Details
15
 
16
+ ### Model Description
17
 
18
+ This fine-tune was done atop of the [Paligemma 448 Widgetcap](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) model, using the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset, which contains ~80k examples of labeled UI elements.
19
 
20
+ The fine-tune was done for the object detection task. Specifically, this model aims to perform well at UI element detection, as part of a wider effort to enable our open-source toolkit for building agents at [AgentSea](https://www.agentsea.ai/).
21
 
22
+ - **Developed by:** https://agentsea.ai/
23
+ - **Language(s) (NLP):** en
24
+ - **Finetuned from model:** https://huggingface.co/google/paligemma-3b-ft-widgetcap-448
25
 
26
+ ### Demo
27
 
28
+ You can find a **demo** for this model [here](https://huggingface.co/spaces/agentsea/paligemma-waveui).
29
 
30
+ ## Notes
31
 
32
+ - The only task used in the fine-tune was the object detection task, so it might not perform well in other types of tasks.
33
+
34
+ ## Usage
 
 
 
 
 
 
 
 
35
 
36
+ To start using this model, run the following:
37
 
38
+ ```python
39
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
40
 
41
+ model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-widgetcap-waveui-448").eval()
42
+ processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-448")
43
+ ```
44
 
45
+ ## Data
46
 
47
+ We used the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for this fine-tune. Before using it, we preprocessed the data to use the Paligemma bounding-box format.
48
+
49
+
50
+ ## Evaluation
51
+
52
+ We will release a full evaluation report soon. Stay tuned! :)