Update README.md
Browse files
README.md
CHANGED
@@ -1,58 +1,52 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
model-index:
|
8 |
-
- name: paligemma-3b-ft-widgetcap-waveui-448
|
9 |
-
results: []
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
-
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/kentauros/paligemma-waveui/runs/hfa841vp)
|
16 |
-
# paligemma-3b-ft-widgetcap-waveui-448
|
17 |
|
18 |
-
|
19 |
|
20 |
-
## Model
|
21 |
|
22 |
-
|
23 |
|
24 |
-
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
|
34 |
-
|
35 |
|
36 |
-
The
|
37 |
-
|
38 |
-
|
39 |
-
- eval_batch_size: 8
|
40 |
-
- seed: 42
|
41 |
-
- gradient_accumulation_steps: 4
|
42 |
-
- total_train_batch_size: 16
|
43 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
-
- lr_scheduler_type: linear
|
45 |
-
- lr_scheduler_warmup_steps: 2
|
46 |
-
- num_epochs: 3
|
47 |
|
48 |
-
|
49 |
|
|
|
|
|
50 |
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- agentsea/wave-ui-25k
|
5 |
+
language:
|
6 |
+
- en
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
+
# Paligemma WaveUI
|
|
|
10 |
|
|
|
|
|
11 |
|
12 |
+
Transformers [PaliGemma 3B 448-res weights](https://huggingface.co/google/paligemma-3b-pt-448), fine-tuned on the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for object-detection.
|
13 |
|
14 |
+
## Model Details
|
15 |
|
16 |
+
### Model Description
|
17 |
|
18 |
+
This fine-tune was done atop of the [Paligemma 448 Widgetcap](https://huggingface.co/google/paligemma-3b-ft-widgetcap-448) model, using the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset, which contains ~80k examples of labeled UI elements.
|
19 |
|
20 |
+
The fine-tune was done for the object detection task. Specifically, this model aims to perform well at UI element detection, as part of a wider effort to enable our open-source toolkit for building agents at [AgentSea](https://www.agentsea.ai/).
|
21 |
|
22 |
+
- **Developed by:** https://agentsea.ai/
|
23 |
+
- **Language(s) (NLP):** en
|
24 |
+
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-ft-widgetcap-448
|
25 |
|
26 |
+
### Demo
|
27 |
|
28 |
+
You can find a **demo** for this model [here](https://huggingface.co/spaces/agentsea/paligemma-waveui).
|
29 |
|
30 |
+
## Notes
|
31 |
|
32 |
+
- The only task used in the fine-tune was the object detection task, so it might not perform well in other types of tasks.
|
33 |
+
|
34 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
To start using this model, run the following:
|
37 |
|
38 |
+
```python
|
39 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
40 |
|
41 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained("agentsea/paligemma-3b-ft-widgetcap-waveui-448").eval()
|
42 |
+
processor = AutoProcessor.from_pretrained("google/paligemma-3b-pt-448")
|
43 |
+
```
|
44 |
|
45 |
+
## Data
|
46 |
|
47 |
+
We used the [WaveUI](https://huggingface.co/datasets/agentsea/wave-ui) dataset for this fine-tune. Before using it, we preprocessed the data to use the Paligemma bounding-box format.
|
48 |
+
|
49 |
+
|
50 |
+
## Evaluation
|
51 |
+
|
52 |
+
We will release a full evaluation report soon. Stay tuned! :)
|