agemagician
commited on
Commit
•
e7a41c6
1
Parent(s):
41da8ec
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,152 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
- af
|
6 |
+
- am
|
7 |
+
- ar
|
8 |
+
- az
|
9 |
+
- be
|
10 |
+
- bg
|
11 |
+
- bn
|
12 |
+
- ca
|
13 |
+
- ceb
|
14 |
+
- co
|
15 |
+
- cs
|
16 |
+
- cy
|
17 |
+
- da
|
18 |
+
- de
|
19 |
+
- el
|
20 |
+
- en
|
21 |
+
- eo
|
22 |
+
- es
|
23 |
+
- et
|
24 |
+
- eu
|
25 |
+
- fa
|
26 |
+
- fi
|
27 |
+
- fil
|
28 |
+
- fr
|
29 |
+
- fy
|
30 |
+
- ga
|
31 |
+
- gd
|
32 |
+
- gl
|
33 |
+
- gu
|
34 |
+
- ha
|
35 |
+
- haw
|
36 |
+
- hi
|
37 |
+
- hmn
|
38 |
+
- ht
|
39 |
+
- hu
|
40 |
+
- hy
|
41 |
+
- ig
|
42 |
+
- is
|
43 |
+
- it
|
44 |
+
- iw
|
45 |
+
- ja
|
46 |
+
- jv
|
47 |
+
- ka
|
48 |
+
- kk
|
49 |
+
- km
|
50 |
+
- kn
|
51 |
+
- ko
|
52 |
+
- ku
|
53 |
+
- ky
|
54 |
+
- la
|
55 |
+
- lb
|
56 |
+
- lo
|
57 |
+
- lt
|
58 |
+
- lv
|
59 |
+
- mg
|
60 |
+
- mi
|
61 |
+
- mk
|
62 |
+
- ml
|
63 |
+
- mn
|
64 |
+
- mr
|
65 |
+
- ms
|
66 |
+
- mt
|
67 |
+
- my
|
68 |
+
- ne
|
69 |
+
- nl
|
70 |
+
- no
|
71 |
+
- ny
|
72 |
+
- pa
|
73 |
+
- pl
|
74 |
+
- ps
|
75 |
+
- pt
|
76 |
+
- ro
|
77 |
+
- ru
|
78 |
+
- sd
|
79 |
+
- si
|
80 |
+
- sk
|
81 |
+
- sl
|
82 |
+
- sm
|
83 |
+
- sn
|
84 |
+
- so
|
85 |
+
- sq
|
86 |
+
- sr
|
87 |
+
- st
|
88 |
+
- su
|
89 |
+
- sv
|
90 |
+
- sw
|
91 |
+
- ta
|
92 |
+
- te
|
93 |
+
- tg
|
94 |
+
- th
|
95 |
+
- tr
|
96 |
+
- uk
|
97 |
+
- und
|
98 |
+
- ur
|
99 |
+
- uz
|
100 |
+
- vi
|
101 |
+
- xh
|
102 |
+
- yi
|
103 |
+
- yo
|
104 |
+
- zh
|
105 |
+
- zu
|
106 |
+
datasets:
|
107 |
+
- mc4
|
108 |
---
|
109 |
+
|
110 |
+
# MLongT5 (transient-global attention, large-sized model)
|
111 |
+
|
112 |
+
MLongT5 model pre-trained on Multi-language corpus. The model was introduced in the paper [mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences](https://arxiv.org/pdf/2305.11129.pdf) by Uthus et al. and first released in [the LongT5 repository](https://github.com/google-research/longt5). All the model architecture and configuration can be found in [Flaxformer repository](https://github.com/google/flaxformer) which uses another Google research project repository [T5x](https://github.com/google-research/t5x).
|
113 |
+
|
114 |
+
Disclaimer: The team releasing MLongT5 did not write a model card for this model so this model card has been written by Ahmed Elnaggar.
|
115 |
+
|
116 |
+
## Model description
|
117 |
+
MLongT5 model is an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting ([Pegasus-like generation pre-training](https://arxiv.org/pdf/1912.08777.pdf)). MLongT5 model is an extension of [LongT5 model](https://arxiv.org/abs/2112.07916), and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. The usage of attention sparsity patterns allows the model to efficiently handle input sequence.
|
118 |
+
|
119 |
+
MLongT5 is particularly effective when fine-tuned for text generation (summarization, question answering) which requires handling long input sequences (up to 16,384 tokens).
|
120 |
+
|
121 |
+
## Intended uses & limitations
|
122 |
+
|
123 |
+
The model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=mlongt5) to look for fine-tuned versions on a task that interests you.
|
124 |
+
|
125 |
+
### How to use
|
126 |
+
|
127 |
+
```python
|
128 |
+
from transformers import T5Tokenizer, LongT5Model
|
129 |
+
|
130 |
+
tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-large")
|
131 |
+
model = LongT5Model.from_pretrained("agemagician/mlong-t5-tglobal-large")
|
132 |
+
|
133 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
134 |
+
outputs = model(**inputs)
|
135 |
+
|
136 |
+
last_hidden_states = outputs.last_hidden_state
|
137 |
+
```
|
138 |
+
|
139 |
+
### BibTeX entry and citation info
|
140 |
+
|
141 |
+
```bibtex
|
142 |
+
@misc{uthus2023mlongt5,
|
143 |
+
title={mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences},
|
144 |
+
author={David Uthus and Santiago Ontañón and Joshua Ainslie and Mandy Guo},
|
145 |
+
year={2023},
|
146 |
+
eprint={2305.11129},
|
147 |
+
archivePrefix={arXiv},
|
148 |
+
primaryClass={cs.CL}
|
149 |
+
}
|
150 |
+
```
|
151 |
+
|
152 |
+
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|